
I

Autonomous Agents

Autonomous Agents

Edited by
Vedran Kordic

In-Tech
intechweb.org

Published by In-Teh

In-Teh
Olajnica 19/2, 32000 Vukovar, Croatia

Abstracting and non-profit use of the material is permitted with credit to the source. Statements and
opinions expressed in the chapters are these of the individual contributors and not necessarily those of
the editors or publisher. No responsibility is accepted for the accuracy of information contained in the
published articles. Publisher assumes no responsibility liability for any damage or injury to persons or
property arising out of the use of any materials, instructions, methods or ideas contained inside. After
this work has been published by the In-Teh, authors have the right to republish it, in whole or part, in any
publication of which they are an author or editor, and the make other personal use of the work.

© 2010 In-teh
www.intechweb.org
Additional copies can be obtained from:
publication@intechweb.org

First published June 2010
Printed in India

Technical Editor: Goran Bajac
Cover designed by Dino Smrekar

Autonomous Agents,
Edited by Vedran Kordic

 p. cm.
ISBN 978-953-307-089-6

V

Preface

Multi agent systems involve a team of agents working together socially to accomplish a task.
An agent can be social in many ways. One is when an agent helps others in solving complex
problems. The field of multi agent systems investigates the process underlying distributed
problem solving and designs some protocols and mechanisms involved in this process. This
book presents an overview about some of the research issues in the field of multi agents. In
summary, this book presents a combination of different research issues which are pursued
by researchers in the domain of multi agent systems. Multi agent systems are one of the best
ways to understand and model human societies and behaviours. In fact, such systems are the
systems of future.

VII

Contents

Preface	 V

1.	 State	and	Action	Abstraction	in	the	Development	of	Agent	Controllers	 001
Brent	E.	Eskridge	and	Dean	F.	Hougen

2.	 Graph	Laplacian	Based	Transfer	Learning	Methods	in	Reinforcement	Learning	 027
Yi-Ting	Tsao,	Ke-Ting	Xiao,	Von-Wun	Soo	and	Chung-Cheng	Chiu

3.	 Tracking	behaviours	of	cooperative	robots	within	multi-agent	domains	 045
Fernando	Ramos	and	Huberto	Ayanegui

4.	 Petri	Net	Robotic	Task	Plan	Representation:	Modelling,	Analysis	and	Execution	 065
Hugo	Costelha	and	Pedro	Lima

5.	 Effective	Planning	for	Conflicting	Situations	for	Ubiquitous	Sensor		
Network	Environments	 091
Toshiharu	Sugawara,	Satoshi	Kurihara,	Toshio	Hirotsu,		
Kensuke	Fukuda	and	Toshihiro	Takada

6.	 Security	in	Large-Scale	Open	Distributed	Multi-Agent	Systems	 107
M.A.	Oey,	M.Warnier	and	F.M.T.	Brazier

State	and	Action	Abstraction	in	the	Development	of	Agent	Controllers 1

State	and	Action	Abstraction	in	the	Development	of	Agent	Controllers

Brent	E.	Eskridge	and	Dean	F.	Hougen

0

State and Action Abstraction in the
Development of Agent Controllers

Brent E. Eskridge
Southern Nazarene University and University of Oklahoma

USA

Dean F. Hougen
University of Oklahoma

USA

1. Introduction

The development of controllers for intelligent agents given a simple task is relatively straight-
forward and even basic techniques can be used to develop such controllers. However, as
agents are given multiple tasks, using basic techniques for developing effective controllers
quickly becomes impractical. Since each task may require distinct state information local to
that task only, the resulting state space for the agent overall is simply too large to effectively
cover. Furthermore, since each task places different demands on the agent, an effective con-
troller must find the correct balance to achieve it’s overall task. While each of these difficulties
presents significant problems individually, their combination can make the development of
agent controllers for these complex tasks impractical.
The potential avenues of investigation for this problem are vast and the literature on the sub-
ject covers the spectrum of algorithms and perspectives. This chapter’s focus is on composite
tasks that are the result of a combination of, in general, Concurrent, Interfering, and Non-
Episodic (CINE) simple, or primitive, tasks. An example of a primitive task is COLLISION-
AVOIDANCE. For our agents, COLLISIONAVOIDANCE is an abstract task that takes two inputs
(relative direction to nearest obstacle and estimated time to contact with that obstacle assum-
ing current speed) and provides two outputs (desired direction and desired speed). As such,
it is simple enough that subdividing it further would not produce coherent subtasks, hence
it is considered primitive. Note, however, that other formulations of COLLISIONAVOIDANCE
that include lower-level information (such as the data from individual sensors or regarding
all obstacles sensed) or actions (such as motor control values for individual components of
the system) could be usefully subdivided into more primitive tasks such as TRACKOBSTACLE
or PANCAMERA. If we combine COLLISIONAVOIDANCE with another simple task such as
GOALSEEK, we arrive at a composite task. It is a composite task because the component tasks
are coherent in and of themselves. Composite tasks composed of CINE primitive tasks have
received comparatively little attention and are, for reasons discussed below, potentially one
of the more difficult areas of focus. In contrast, many approaches focus on complex tasks that
are composed of a series of sequential primitive tasks.

1

Autonomous	Agents2

The challenge of correctly balancing CINE tasks, in addition to the complexity of the state
and action spaces, must be addressed for the development of effective controllers for com-
binations of CINE tasks to be practical. Due to the variety of challenges, it is possible that
a number of techniques must be combined to find an acceptable solution. As the complex-
ity of the combined state and action space is a major challenge, it makes sense to consider
state and/or action abstraction. For example, to coordinate the combination of COLLISION-
AVOIDANCE and GOALSEEK it is important to know if a collision is imminent. If it is, the
agent should probably try to avoid it.1 If it isn’t, the agent should head for the goal. If the
answer is somewhere in between, the agent might give similar importance to both COLLI-
SIONAVOIDANCE and GOALSEEK. Further, to determine if a collision is likely to occur soon,
it isn’t necessary to know whether the nearest obstacle is on the right or the left, only whether
it is in front of the agent or off to either side. So state abstraction (in the form of ignoring
right/left information) could reduce the amount of information used to decide the relative
importance of COLLISIONAVOIDANCE and GOALSEEK. However, even if not all information
is needed for all decisions, information cannot be simply discarded.2 To continue the example,
if the decision is that COLLISIONAVOIDANCE is at least somewhat important on this timestep,
the agent will need to know which way to turn to avoid the obstacle.
The preceding example contained an explicit instance of state abstraction (using only the mag-
nitude of the angle to the obstacle while ignoring its sign) but also an implicit instance of action
abstraction. Note that the decision as to which way to turn was abstracted into determining
how imminent a collision appears, then deciding how much importance to assign to each of
the subtasks, then determining which way to turn. Such action abstraction is not necessary,
however. In contrast, it would be possible to directly calculate turning angle as a function of
obstacle and goal directions and distances.
Temporal abstraction, in the form of creating sequences of tasks, is also used in some systems
to deal with composite tasks (Rohanimanesh & Mahadevan, 2002). However, such temporal
abstraction will not work when the tasks are interfering as in our present research.
One approach that promotes the use of state and action abstraction while still allowing access
to the unabstracted states and actions is the use of a hierarchical controller. A hierarchical
controller leverages the hierarchical nature of the composite task by using smaller controllers
responsible for each primitive task in the lowest level of the hierarchical controller and meta-
controllers in the higher levels of the hierarchical controller to coordinate the lower-level con-
trollers. Since low-level controllers are only responsible for a single primitive task, they do
not need access to the full state space of the composite task, thus avoiding the combinatorial
complexity of the composite task’s state space. Furthermore, high-level meta-controllers are
able to use state and action abstraction to simplify the state space since they merely coordinate
the lower-level controllers that produce control actions instead of producing control actions
themselves.

2. Adaptive Fuzzy Behavior Hierarchies

An example of a hierarchical approach to agent control, and the one used for the work de-
scribed here, is an adaptive fuzzy behavior hierarchy (Tunstel, 2001). The hierarchy is orga-

1 Only “probably” because if the goal is extremely close, the agent may prefer to reach the goal rather
than avoid the obstacle.

2 Some authors do deal with cases in which some variables are irrelevant and may be simply ignored by
the controller with no loss of performance. We are assuming that all variables are relevant at least on
some timesteps.

β
1

β
2

B
1

B
m

B
0

β
n

Fig. 1. Primitive behaviors (denoted βi) are organized into a hierarchy and adaptively
weighted by composite behaviors (denoted Bm) as described by Tunstel (2001) and redrawn
here. The half-filled circles denote the weights and threshold values used to modulate behav-
iors.

nized using two types of behaviors. Behaviors responsible for accomplishing simple, primi-
tive tasks are called primitive behaviors (see Figure 1). Primitive behaviors reside at the lowest
level of the hierarchy and are responsible for producing low-level control actions for the agent.
Since each primitive behavior is responsible for a single primitive task, inputs to the behavior
consist of only state information relevant to the associated primitive task.
Following the formulation of Tunstel (2001), let X and U be, respectively, the sets of all possible
input and output values, or universes of discourse, for a primitive behavior with a ruleset of
size M. Individual rules within the ruleset have the following form:

IF x is Ãi THEN u is B̃i (1)

where x represents the linguistic variables describing primitive task state information, such
as direction or distance, and u represents linguistic variables describing motor command ac-
tions, such as steering direction and speed, Ãi and B̃i represent the fuzzy linguistic values
corresponding to the variables x and u. The antecedent proposition “x is Ãi” can be replaced
with a compound antecedent using a conjunction or disjunction of propositions. The conse-
quent “u is B̃i” could also be replaced with a compound consequent. An an example of a
low-level rule in a primitive behavior responsible for steering towards a goal could be:

IF goalDir is LEFT THEN steerDir is LEFT (2)

The output fuzzy set of each primitive behavior can be combined in a similar manner to
produce a single output. However, since primitive behaviors often have conflicting goals,
their actions often also conflict. A method of assigning different activation levels to different
primitive behaviors could address these conflicts and allow an agent to accomplish its over-
all composite task. In an adaptive fuzzy behavior hierarchy, this is accomplished by means
of behavior modulation in which the activation levels of primitive behaviors are adjusted, or
adapted, based on the current overall state of the agent. These activation levels are referred
to as degrees of applicability (DOA) and are assigned to primitive behaviors by a high-level
composite behavior. Composite behaviors are only responsible for modulating other behaviors,
either primitive or composite, and do not produce low-level control commands. For example,
a composite behavior that is responsible for modulating a COLLISIONAVOIDANCE primitive
behavior and a GOALSEEK primitive behavior could determine that since a collision is not im-
minent, the GOALSEEK behavior is more applicable and should have a HIGH activation, while

State	and	Action	Abstraction	in	the	Development	of	Agent	Controllers 3

The challenge of correctly balancing CINE tasks, in addition to the complexity of the state
and action spaces, must be addressed for the development of effective controllers for com-
binations of CINE tasks to be practical. Due to the variety of challenges, it is possible that
a number of techniques must be combined to find an acceptable solution. As the complex-
ity of the combined state and action space is a major challenge, it makes sense to consider
state and/or action abstraction. For example, to coordinate the combination of COLLISION-
AVOIDANCE and GOALSEEK it is important to know if a collision is imminent. If it is, the
agent should probably try to avoid it.1 If it isn’t, the agent should head for the goal. If the
answer is somewhere in between, the agent might give similar importance to both COLLI-
SIONAVOIDANCE and GOALSEEK. Further, to determine if a collision is likely to occur soon,
it isn’t necessary to know whether the nearest obstacle is on the right or the left, only whether
it is in front of the agent or off to either side. So state abstraction (in the form of ignoring
right/left information) could reduce the amount of information used to decide the relative
importance of COLLISIONAVOIDANCE and GOALSEEK. However, even if not all information
is needed for all decisions, information cannot be simply discarded.2 To continue the example,
if the decision is that COLLISIONAVOIDANCE is at least somewhat important on this timestep,
the agent will need to know which way to turn to avoid the obstacle.
The preceding example contained an explicit instance of state abstraction (using only the mag-
nitude of the angle to the obstacle while ignoring its sign) but also an implicit instance of action
abstraction. Note that the decision as to which way to turn was abstracted into determining
how imminent a collision appears, then deciding how much importance to assign to each of
the subtasks, then determining which way to turn. Such action abstraction is not necessary,
however. In contrast, it would be possible to directly calculate turning angle as a function of
obstacle and goal directions and distances.
Temporal abstraction, in the form of creating sequences of tasks, is also used in some systems
to deal with composite tasks (Rohanimanesh & Mahadevan, 2002). However, such temporal
abstraction will not work when the tasks are interfering as in our present research.
One approach that promotes the use of state and action abstraction while still allowing access
to the unabstracted states and actions is the use of a hierarchical controller. A hierarchical
controller leverages the hierarchical nature of the composite task by using smaller controllers
responsible for each primitive task in the lowest level of the hierarchical controller and meta-
controllers in the higher levels of the hierarchical controller to coordinate the lower-level con-
trollers. Since low-level controllers are only responsible for a single primitive task, they do
not need access to the full state space of the composite task, thus avoiding the combinatorial
complexity of the composite task’s state space. Furthermore, high-level meta-controllers are
able to use state and action abstraction to simplify the state space since they merely coordinate
the lower-level controllers that produce control actions instead of producing control actions
themselves.

2. Adaptive Fuzzy Behavior Hierarchies

An example of a hierarchical approach to agent control, and the one used for the work de-
scribed here, is an adaptive fuzzy behavior hierarchy (Tunstel, 2001). The hierarchy is orga-

1 Only “probably” because if the goal is extremely close, the agent may prefer to reach the goal rather
than avoid the obstacle.

2 Some authors do deal with cases in which some variables are irrelevant and may be simply ignored by
the controller with no loss of performance. We are assuming that all variables are relevant at least on
some timesteps.

β
1

β
2

B
1

B
m

B
0

β
n

Fig. 1. Primitive behaviors (denoted βi) are organized into a hierarchy and adaptively
weighted by composite behaviors (denoted Bm) as described by Tunstel (2001) and redrawn
here. The half-filled circles denote the weights and threshold values used to modulate behav-
iors.

nized using two types of behaviors. Behaviors responsible for accomplishing simple, primi-
tive tasks are called primitive behaviors (see Figure 1). Primitive behaviors reside at the lowest
level of the hierarchy and are responsible for producing low-level control actions for the agent.
Since each primitive behavior is responsible for a single primitive task, inputs to the behavior
consist of only state information relevant to the associated primitive task.
Following the formulation of Tunstel (2001), let X and U be, respectively, the sets of all possible
input and output values, or universes of discourse, for a primitive behavior with a ruleset of
size M. Individual rules within the ruleset have the following form:

IF x is Ãi THEN u is B̃i (1)

where x represents the linguistic variables describing primitive task state information, such
as direction or distance, and u represents linguistic variables describing motor command ac-
tions, such as steering direction and speed, Ãi and B̃i represent the fuzzy linguistic values
corresponding to the variables x and u. The antecedent proposition “x is Ãi” can be replaced
with a compound antecedent using a conjunction or disjunction of propositions. The conse-
quent “u is B̃i” could also be replaced with a compound consequent. An an example of a
low-level rule in a primitive behavior responsible for steering towards a goal could be:

IF goalDir is LEFT THEN steerDir is LEFT (2)

The output fuzzy set of each primitive behavior can be combined in a similar manner to
produce a single output. However, since primitive behaviors often have conflicting goals,
their actions often also conflict. A method of assigning different activation levels to different
primitive behaviors could address these conflicts and allow an agent to accomplish its over-
all composite task. In an adaptive fuzzy behavior hierarchy, this is accomplished by means
of behavior modulation in which the activation levels of primitive behaviors are adjusted, or
adapted, based on the current overall state of the agent. These activation levels are referred
to as degrees of applicability (DOA) and are assigned to primitive behaviors by a high-level
composite behavior. Composite behaviors are only responsible for modulating other behaviors,
either primitive or composite, and do not produce low-level control commands. For example,
a composite behavior that is responsible for modulating a COLLISIONAVOIDANCE primitive
behavior and a GOALSEEK primitive behavior could determine that since a collision is not im-
minent, the GOALSEEK behavior is more applicable and should have a HIGH activation, while

Autonomous	Agents4

the COLLISIONAVOIDANCE behavior should have a LOW activation. Composite behaviors are
also implemented using fuzzy rulesets, but, since they produce outputs specifying activation
levels and use different output fuzzy linguistic variables and values, their consequents differ
from those found in primitive behaviors. Fuzzy rules within a composite behavior have the
basic form:

IF x is Ãi THEN α is D̃i (3)

where Ãi is defined as in Equation 1, α is the scalar activation level of a given behavior, and
D̃i represents the fuzzy linguistic values (e.g. LOW, MEDIUM, HIGH) corresponding to the ac-
tivation levels which are used to modulate a behavior. If a behavior is not explicitly given
an activation level, it is automatically given a default activation of 0 and does not contribute
to the overall output of the controller. Furthermore, threshold values can be used to provide
cutoff points for a modulated behavior’s activation (Tunstel, 1999). Just as with primitive be-
haviors, the output of a composite behavior is a fuzzy set. However, when defuzzified, the
crisp values provide the current activation levels of lower-level behaviors, and not motor con-
trol commands. Using fuzzy rulesets to produce activation levels results in smooth transitions
between different sets of activation levels in response to the changing state of the agent.
The activation level αp of a modulated behavior p is used to calculate the weighted contribu-
tion of the behavior to the overall controller’s output. The output of each primitive behavior
can now be combined using their respective activation levels to weight their overall contribu-
tion to the action generated by the controller. The output of the entire behavior hierarchy is
calculated as follows:

β̃H =
⊎

p∈P
αp · β̃p (4)

where β̃H is the output of the entire behavior hierarchy, P is the set of all primitive behaviors,
β̃p is the output of the behavior p, and

⊎
is the arithmetic sum of the fuzzy sets over all the

primitive behaviors. The fuzzy output values are then defuzzified using the discrete form of
Center-of-Sums defuzzification (Driankov et al., 1996).
Since composite behaviors only modulate lower-level behaviors using state information, com-
posite behaviors do not require lower-level behaviors to provide any information to aid in the
modulation process. This is in contrast to other behavior coordination mechanisms which, for
example, may require low-level behaviors to indicate the utility of a specific action (Pirjanian
& Matarić, 2001). The only restriction that an adaptive fuzzy behavior hierarchy places on
modulated behaviors is that primitive behaviors produce a fuzzy set as output since fuzzy
inferencing is used to combine their outputs into a single action.
It is important to note that since a composite behavior does not produce low-level control
actions, it may not need the full joint state space of the composite task to provide effective
behavior modulation. For example, it is possible that the direction of the closest collision is ir-
relevant when determining the modulation for a COLLISIONAVOIDANCE primitive behavior.
It may be that only the estimated time until the collision is important. As a result, it may be
possible to reduce the state information used by the modulation process in a composite be-
havior that provides comparable performance. A reduced state set such as this would provide
significant benefits not only in reducing the complexity of the composite behavior’s ruleset,
but also in the effort required to develop the ruleset itself.
Although there are a number of ways to reduce the agent’s state space (de Oliveira et al., 2003;
Guyon & Elisseeff, 2003; Guyon et al., 2006; Raymer et al., 2000; Yang & Honavar, 1998), in the
work presented here we use the approach where state information is converted into a more
abstract form. This approach can result in either (1) fewer state variables or (2) no change in

COLLISION

AVOIDANCE
GOALSEEK

CA-GS

(a) CA-GS behavior hier-
archy

COLLISION

AVOIDANCE
GOALSEEK

CA-GS-RA

RUNAWAY

(b) CA-GS-RA behavior hierarchy

Fig. 2. The behavior hierarchies for the CA-GS and CA-GS-RA single-agent composite tasks
are shown.

the number of state variables but simpler extracted variable sets. For example, a composite
behavior may not need to know the exact relative direction to an object and only requires the
magnitude of the direction for effective control. In this example, the original direction state
variable is extracted to a more simple representation where both SMALL_LEFT and SMALL_-
RIGHT are abstracted to the same SMALL value. Since primitive tasks are, by definition, simple
and straightforward, one can easily determine abstractions that may be beneficial
Although adaptive fuzzy behavior hierarchies have been shown to provide effective control,
their implementation, as described by Tunstel, limits their application to two-level hierarchies.
We have addressed this limitation by extending the architecture to properly function with
hierarchies of arbitrary size (Eskridge & Hougen, 2009).

3. Problem Domains

For this work, a number of autonomous agent navigation problem domains were used. In
each domain, an agent was given a complex task composed of N primitive tasks. In general,
the primitive tasks used were active concurrently, interfered with one another, and were non-
episodic (CINE). The only exception was the GOALSEEK task which terminated when an agent
reached the goal location.
The composition of these N primitive tasks forms a composite task for which the agent should
take an action at each timestep that maximizes the summed expected reward of each primitive
task. An important aspect of this combination of primitive tasks is that an action that max-
imizes the reward for one primitive task could result in a penalty for another primitive task
and, therefore, cause interference between the primitive tasks. While each primitive task had
a (relatively) small state space, the state space for the composite task was the cross product
of the state space for each primitive task: S = S1 × S2 × . . . × SN . When this combined state
space, referred to as the joint state space, was combined with the low-level action space, the
resulting complexity made the traditional development of an effective controller impractical
in some instances.

3.1 Single Agent Problem Domains
In the first single-agent composite task, an agent navigated towards a goal location while
avoiding any obstacles in its path. This composite task, denoted CA-GS, was the combina-
tion of the COLLISIONAVOIDANCE and GOALSEEK primitive tasks. In the fuzzy behavior
hierarchy for the CA-GS composite task, primitive behaviors were created at the lowest level
for the COLLISIONAVOIDANCE and GOALSEEK primitive tasks (see Figure 2(a)). A composite

State	and	Action	Abstraction	in	the	Development	of	Agent	Controllers 5

the COLLISIONAVOIDANCE behavior should have a LOW activation. Composite behaviors are
also implemented using fuzzy rulesets, but, since they produce outputs specifying activation
levels and use different output fuzzy linguistic variables and values, their consequents differ
from those found in primitive behaviors. Fuzzy rules within a composite behavior have the
basic form:

IF x is Ãi THEN α is D̃i (3)

where Ãi is defined as in Equation 1, α is the scalar activation level of a given behavior, and
D̃i represents the fuzzy linguistic values (e.g. LOW, MEDIUM, HIGH) corresponding to the ac-
tivation levels which are used to modulate a behavior. If a behavior is not explicitly given
an activation level, it is automatically given a default activation of 0 and does not contribute
to the overall output of the controller. Furthermore, threshold values can be used to provide
cutoff points for a modulated behavior’s activation (Tunstel, 1999). Just as with primitive be-
haviors, the output of a composite behavior is a fuzzy set. However, when defuzzified, the
crisp values provide the current activation levels of lower-level behaviors, and not motor con-
trol commands. Using fuzzy rulesets to produce activation levels results in smooth transitions
between different sets of activation levels in response to the changing state of the agent.
The activation level αp of a modulated behavior p is used to calculate the weighted contribu-
tion of the behavior to the overall controller’s output. The output of each primitive behavior
can now be combined using their respective activation levels to weight their overall contribu-
tion to the action generated by the controller. The output of the entire behavior hierarchy is
calculated as follows:

β̃H =
⊎

p∈P
αp · β̃p (4)

where β̃H is the output of the entire behavior hierarchy, P is the set of all primitive behaviors,
β̃p is the output of the behavior p, and

⊎
is the arithmetic sum of the fuzzy sets over all the

primitive behaviors. The fuzzy output values are then defuzzified using the discrete form of
Center-of-Sums defuzzification (Driankov et al., 1996).
Since composite behaviors only modulate lower-level behaviors using state information, com-
posite behaviors do not require lower-level behaviors to provide any information to aid in the
modulation process. This is in contrast to other behavior coordination mechanisms which, for
example, may require low-level behaviors to indicate the utility of a specific action (Pirjanian
& Matarić, 2001). The only restriction that an adaptive fuzzy behavior hierarchy places on
modulated behaviors is that primitive behaviors produce a fuzzy set as output since fuzzy
inferencing is used to combine their outputs into a single action.
It is important to note that since a composite behavior does not produce low-level control
actions, it may not need the full joint state space of the composite task to provide effective
behavior modulation. For example, it is possible that the direction of the closest collision is ir-
relevant when determining the modulation for a COLLISIONAVOIDANCE primitive behavior.
It may be that only the estimated time until the collision is important. As a result, it may be
possible to reduce the state information used by the modulation process in a composite be-
havior that provides comparable performance. A reduced state set such as this would provide
significant benefits not only in reducing the complexity of the composite behavior’s ruleset,
but also in the effort required to develop the ruleset itself.
Although there are a number of ways to reduce the agent’s state space (de Oliveira et al., 2003;
Guyon & Elisseeff, 2003; Guyon et al., 2006; Raymer et al., 2000; Yang & Honavar, 1998), in the
work presented here we use the approach where state information is converted into a more
abstract form. This approach can result in either (1) fewer state variables or (2) no change in

COLLISION

AVOIDANCE
GOALSEEK

CA-GS

(a) CA-GS behavior hier-
archy

COLLISION

AVOIDANCE
GOALSEEK

CA-GS-RA

RUNAWAY

(b) CA-GS-RA behavior hierarchy

Fig. 2. The behavior hierarchies for the CA-GS and CA-GS-RA single-agent composite tasks
are shown.

the number of state variables but simpler extracted variable sets. For example, a composite
behavior may not need to know the exact relative direction to an object and only requires the
magnitude of the direction for effective control. In this example, the original direction state
variable is extracted to a more simple representation where both SMALL_LEFT and SMALL_-
RIGHT are abstracted to the same SMALL value. Since primitive tasks are, by definition, simple
and straightforward, one can easily determine abstractions that may be beneficial
Although adaptive fuzzy behavior hierarchies have been shown to provide effective control,
their implementation, as described by Tunstel, limits their application to two-level hierarchies.
We have addressed this limitation by extending the architecture to properly function with
hierarchies of arbitrary size (Eskridge & Hougen, 2009).

3. Problem Domains

For this work, a number of autonomous agent navigation problem domains were used. In
each domain, an agent was given a complex task composed of N primitive tasks. In general,
the primitive tasks used were active concurrently, interfered with one another, and were non-
episodic (CINE). The only exception was the GOALSEEK task which terminated when an agent
reached the goal location.
The composition of these N primitive tasks forms a composite task for which the agent should
take an action at each timestep that maximizes the summed expected reward of each primitive
task. An important aspect of this combination of primitive tasks is that an action that max-
imizes the reward for one primitive task could result in a penalty for another primitive task
and, therefore, cause interference between the primitive tasks. While each primitive task had
a (relatively) small state space, the state space for the composite task was the cross product
of the state space for each primitive task: S = S1 × S2 × . . . × SN . When this combined state
space, referred to as the joint state space, was combined with the low-level action space, the
resulting complexity made the traditional development of an effective controller impractical
in some instances.

3.1 Single Agent Problem Domains
In the first single-agent composite task, an agent navigated towards a goal location while
avoiding any obstacles in its path. This composite task, denoted CA-GS, was the combina-
tion of the COLLISIONAVOIDANCE and GOALSEEK primitive tasks. In the fuzzy behavior
hierarchy for the CA-GS composite task, primitive behaviors were created at the lowest level
for the COLLISIONAVOIDANCE and GOALSEEK primitive tasks (see Figure 2(a)). A composite

Autonomous	Agents6

Alignment Cohesion

Flocking

Separation

Fig. 3. The FLOCKING composite behavior composes the ALIGNMENT, COHESION, and SEPA-
RATION primitive behaviors by using weights, denoted as half-filled circles.

behavior for the CA-GS composite task was then created at the level above the primitive be-
haviors and was responsible for weighting the primitive behaviors properly, given the current
state of the agent with respect to the composite task as a whole.
In the second single-agent composite task, a third primitive task was added to the previous
two. In this new primitive task, denoted RUNAWAY, the agent must avoid approaching too
close to “hazardous” objects in the environment. The hazardous objects were not physical
objects like obstacles with which the agent could collide, but instead represented areas that
could be dangerous to the agent like areas of high-traffic or with difficult terrain. In COLLI-
SIONAVOIDANCE, a penalty was only assessed if the agent actually collided with an obstacle.
However, in RUNAWAY, an agent was penalized for simply being near hazards. The exact
value of the penalty was dependent on the the distance to and strength of each hazard in
the environment (a higher strength indicated a greater hazard). The new composite task was
denoted CA-GS-RA. The fuzzy behavior hierarchy for the CA-GS-RA composite task was
similar to that of the CA-GS hierarchy with the addition of the RUNAWAY primitive behavior
(see Figure 2(b)).

3.2 Multi-Agent Problem Domains
In the first multi-agent composite task, a team of homogeneous agents must move together as
a single unit, or flock, without explicit communication. This composite task, denoted FLOCK-
ING, approximated the movement of flocks of birds or schools of fish (Reynolds, 1987; 1999)
and was a combination of the ALIGNMENT, COHESION, and SEPARATION primitive tasks. In
the ALIGNMENT primitive task, the agents were given the task of steering in the same direc-
tion and at the same speed as the rest of the team. In the COHESION primitive task, the agents
were given the task of steering towards the other agents in the team in an effort to remain
close to the team. Lastly, in the SEPARATION primitive task, the agents were given the task of
steering away from other agents on the team which were “too close” in an effort to maintain
a safe, minimum separation and prevent crowding. Agents relied only on the state informa-
tion provided by sensors and did not communicate. Note that the goals of the ALIGNMENT
and SEPARATION primitive tasks are diametrically opposed. Therefore, for FLOCKING to be
successful, a policy that was able to effectively balance the two was necessary.
In the fuzzy behavior hierarchy for the FLOCKING composite task, primitive behaviors were
created at the lowest level for the ALIGNMENT, COHESION, and SEPARATION primitive tasks
(see Figure 3). A composite behavior for the FLOCKING composite task was then created
at the level above the primitive behaviors and was responsible for weighting ALIGNMENT,
COHESION, and SEPARATION properly, given the current state of the composite task.
In the next multi-agent composite task, we added the primitive task of COLLISIONAVOID-
ANCE to the FLOCKING composite task. In this task, each agent was tasked with avoiding
collisions with other agents and with obstacles in the environment in addition to performing

ALIGNMENT COHESION SEPARATION
COLLISION

AVOIDANCE

FLOCKING-CA

(a) 2-level hierarchy

ALIGNMENT COHESION

FLOCKING

SEPARATION
COLLISION

AVOIDANCE

FLOCKING-CA

(b) 3-level hierarchy

Fig. 4. The two alternatives for implementing the FLOCKING-CA composite behavior are
shown. In the first, the FLOCKING-CA composite behavior composes the ALIGNMENT,
COHESION, SEPARATION, and COLLISIONAVOIDANCE primitive behaviors. In the second,
FLOCKING-CA composes the FLOCKING composite behavior with the COLLISIONAVOID-
ANCE primitive behavior.

FLOCKING. The COLLISIONAVOIDANCE primitive task did not differentiate between colli-
sions with other agents or obstacles. This new composite task, denoted FLOCKING-CA, pre-
sented the option of adding a new composite behavior, and, therefore, another level to the
hierarchy (see Figure 4). Since the COLLISIONAVOIDANCE behavior was ignorant of the con-
cept of a team and teammates, an argument can be made that it should be considered sepa-
rately from the FLOCKING primitive behaviors. The use of an additional composite behavior
at a higher level in the hierarchy not only simplified the action space of the FLOCKING-CA
composite task, but it also had the potential to simplify the state space if the full joint state
space of the composite task was not necessary for effective control. Furthermore, this hier-
archical decomposition enabled existing policies for the FLOCKING task to be reused for the
FLOCKING-CA task.
To further increase the complexity, the GOALSEEK primitive task was added to the previous
composite task to create the FLOCKING-CA-GS composite task. While the COLLISIONAVOID-
ANCE primitive task could have actually assisted the task of FLOCKING by providing another
means of avoiding collisions between members of the team in addition to the SEPARATION
task, the addition of the GOALSEEK complicated the FLOCKING task. As with the FLOCKING-
CA task, the clear separation between the FLOCKING composite task and the COLLISION-
AVOIDANCE and GOALSEEK primitive tasks offered the potential for creating a separate com-
posite behavior for coordinating the respective behaviors.
In the last multi-agent composite task, the RUNAWAY primitive task was added to the
FLOCKING-CA-GS composite task to create the FLOCKING-CA-GS-RA composite task. As
with the previous two composite tasks, a separate composite behavior which coordinated the
FLOCKING composite task and the COLLISIONAVOIDANCE, GOALSEEK, and RUNAWAY prim-
itive behaviors was possible. While the same potential benefits existed, the large number of
primitive tasks which must be coordinated had the potential to exaggerate the results. As is
described in Section 6, it was at this point that the complexity of the composite task’s joint
state space became too large for traditional methods of developing effective controllers to be
practical and alternative methods were required. The use of this composite task represented
the upper limit of complexity used in this work.

State	and	Action	Abstraction	in	the	Development	of	Agent	Controllers 7

Alignment Cohesion

Flocking

Separation

Fig. 3. The FLOCKING composite behavior composes the ALIGNMENT, COHESION, and SEPA-
RATION primitive behaviors by using weights, denoted as half-filled circles.

behavior for the CA-GS composite task was then created at the level above the primitive be-
haviors and was responsible for weighting the primitive behaviors properly, given the current
state of the agent with respect to the composite task as a whole.
In the second single-agent composite task, a third primitive task was added to the previous
two. In this new primitive task, denoted RUNAWAY, the agent must avoid approaching too
close to “hazardous” objects in the environment. The hazardous objects were not physical
objects like obstacles with which the agent could collide, but instead represented areas that
could be dangerous to the agent like areas of high-traffic or with difficult terrain. In COLLI-
SIONAVOIDANCE, a penalty was only assessed if the agent actually collided with an obstacle.
However, in RUNAWAY, an agent was penalized for simply being near hazards. The exact
value of the penalty was dependent on the the distance to and strength of each hazard in
the environment (a higher strength indicated a greater hazard). The new composite task was
denoted CA-GS-RA. The fuzzy behavior hierarchy for the CA-GS-RA composite task was
similar to that of the CA-GS hierarchy with the addition of the RUNAWAY primitive behavior
(see Figure 2(b)).

3.2 Multi-Agent Problem Domains
In the first multi-agent composite task, a team of homogeneous agents must move together as
a single unit, or flock, without explicit communication. This composite task, denoted FLOCK-
ING, approximated the movement of flocks of birds or schools of fish (Reynolds, 1987; 1999)
and was a combination of the ALIGNMENT, COHESION, and SEPARATION primitive tasks. In
the ALIGNMENT primitive task, the agents were given the task of steering in the same direc-
tion and at the same speed as the rest of the team. In the COHESION primitive task, the agents
were given the task of steering towards the other agents in the team in an effort to remain
close to the team. Lastly, in the SEPARATION primitive task, the agents were given the task of
steering away from other agents on the team which were “too close” in an effort to maintain
a safe, minimum separation and prevent crowding. Agents relied only on the state informa-
tion provided by sensors and did not communicate. Note that the goals of the ALIGNMENT
and SEPARATION primitive tasks are diametrically opposed. Therefore, for FLOCKING to be
successful, a policy that was able to effectively balance the two was necessary.
In the fuzzy behavior hierarchy for the FLOCKING composite task, primitive behaviors were
created at the lowest level for the ALIGNMENT, COHESION, and SEPARATION primitive tasks
(see Figure 3). A composite behavior for the FLOCKING composite task was then created
at the level above the primitive behaviors and was responsible for weighting ALIGNMENT,
COHESION, and SEPARATION properly, given the current state of the composite task.
In the next multi-agent composite task, we added the primitive task of COLLISIONAVOID-
ANCE to the FLOCKING composite task. In this task, each agent was tasked with avoiding
collisions with other agents and with obstacles in the environment in addition to performing

ALIGNMENT COHESION SEPARATION
COLLISION

AVOIDANCE

FLOCKING-CA

(a) 2-level hierarchy

ALIGNMENT COHESION

FLOCKING

SEPARATION
COLLISION

AVOIDANCE

FLOCKING-CA

(b) 3-level hierarchy

Fig. 4. The two alternatives for implementing the FLOCKING-CA composite behavior are
shown. In the first, the FLOCKING-CA composite behavior composes the ALIGNMENT,
COHESION, SEPARATION, and COLLISIONAVOIDANCE primitive behaviors. In the second,
FLOCKING-CA composes the FLOCKING composite behavior with the COLLISIONAVOID-
ANCE primitive behavior.

FLOCKING. The COLLISIONAVOIDANCE primitive task did not differentiate between colli-
sions with other agents or obstacles. This new composite task, denoted FLOCKING-CA, pre-
sented the option of adding a new composite behavior, and, therefore, another level to the
hierarchy (see Figure 4). Since the COLLISIONAVOIDANCE behavior was ignorant of the con-
cept of a team and teammates, an argument can be made that it should be considered sepa-
rately from the FLOCKING primitive behaviors. The use of an additional composite behavior
at a higher level in the hierarchy not only simplified the action space of the FLOCKING-CA
composite task, but it also had the potential to simplify the state space if the full joint state
space of the composite task was not necessary for effective control. Furthermore, this hier-
archical decomposition enabled existing policies for the FLOCKING task to be reused for the
FLOCKING-CA task.
To further increase the complexity, the GOALSEEK primitive task was added to the previous
composite task to create the FLOCKING-CA-GS composite task. While the COLLISIONAVOID-
ANCE primitive task could have actually assisted the task of FLOCKING by providing another
means of avoiding collisions between members of the team in addition to the SEPARATION
task, the addition of the GOALSEEK complicated the FLOCKING task. As with the FLOCKING-
CA task, the clear separation between the FLOCKING composite task and the COLLISION-
AVOIDANCE and GOALSEEK primitive tasks offered the potential for creating a separate com-
posite behavior for coordinating the respective behaviors.
In the last multi-agent composite task, the RUNAWAY primitive task was added to the
FLOCKING-CA-GS composite task to create the FLOCKING-CA-GS-RA composite task. As
with the previous two composite tasks, a separate composite behavior which coordinated the
FLOCKING composite task and the COLLISIONAVOIDANCE, GOALSEEK, and RUNAWAY prim-
itive behaviors was possible. While the same potential benefits existed, the large number of
primitive tasks which must be coordinated had the potential to exaggerate the results. As is
described in Section 6, it was at this point that the complexity of the composite task’s joint
state space became too large for traditional methods of developing effective controllers to be
practical and alternative methods were required. The use of this composite task represented
the upper limit of complexity used in this work.

Autonomous	Agents8

ALIGNMENT COHESION SEPARATION
COLLISION

AVOIDANCE

FLOCKING-CA-GS

GOALSEEK

(a) 2-level hierarchy

ALIGNMENT COHESION

FLOCKING

SEPARATION
COLLISION

AVOIDANCE

FLOCKING-CA-GS

GOALSEEK

(b) 3-level hierarchy reusing one composite behavior

ALIGNMENT COHESION

FLOCKING

SEPARATION
COLLISION

AVOIDANCE

FLOCKING-CA-GS

GOALSEEK

CA-GS

(c) 3-level hierarchy reusing two composite behaviors

Fig. 5. Three alternatives for implementing the FLOCKING-CA-GS composite behavior are
shown. Each is similar to the corresponding hierarchy for the FLOCKING-CA composite task
with the addition of the GOALSEEK primitive behavior

4. Development of Controllers

A standard approach to such complex tasks is to combine primitive tasks into a single com-
posite task. A policy is then developed for the entire composite task, effectively developing
a single policy responsible for addressing each primitive task and the coordination between
them (see Figure 7(a)). The problem with this monolithic approach is that development of
even the simplest composite task can be impractical due to the curse of dimensionality.

4.1 Modular Reinforcement Learning
Humphrys (1996) and Karlsson (1997) independently describe a reinforcement learning algo-
rithm that is appropriate for the CINE types of problems under study here. In this algorithm,
commonly referred to as modular reinforcement learning (Bhat et al., 2006; Sprague & Ballard,

ALIGNMENT COHESION SEPARATION
COLLISION

AVOIDANCE

FLOCKING-CA-GS-RA

GOALSEEK RUNAWAY

(a) 2-level hierarchy

ALIGNMENT COHESION

FLOCKING

SEPARATION
COLLISION

AVOIDANCE

FLOCKING-CA-GS-RA

GOALSEEK RUNAWAY

(b) 3-level hierarchy reusing one composite behavior

ALIGNMENT COHESION

FLOCKING

SEPARATION
COLLISION

AVOIDANCE

FLOCKING-CA-GS-RA

GOALSEEK

CA-GS-RA

RUNAWAY

(c) 3-level hierarchy reusing two composite behaviors

Fig. 6. Three alternatives for implementing the FLOCKING-CA-GS-RA composite behavior
are shown. Each is similar to the corresponding hierarchy for the FLOCKING-CA-GS compos-
ite task with the addition of the RUNAWAY primitive behavior

2003), a policy for each active primitive task is learned simultaneously using the state informa-
tion and rewards local only to the task (see Figure 7(b)). At each time step, the policy for each
subtask provides the action selection mechanism with a utility value for each possible action.
This utility value is calculated using the value of taking a particular action from a given state,
referred to as a Q-value, and is often simply the Q-value itself. These utilities are then used
by the action selection mechanism to choose the action that the agent will take. The approach
used in this work to choose the action, called the “greatest mass,” simply chooses the action
with the highest utility, or sum of Q-values, across all the primitive task policies (Karlsson,
1997).
Q-learning should not be used in learning the primitive task policies since it is off-policy and
assumes the optimal policy will be followed (Watkins & Dayan, 1992). One cannot assume
that the optimal policy will be followed for modular reinforcement learning since primitive

State	and	Action	Abstraction	in	the	Development	of	Agent	Controllers 9

ALIGNMENT COHESION SEPARATION
COLLISION

AVOIDANCE

FLOCKING-CA-GS

GOALSEEK

(a) 2-level hierarchy

ALIGNMENT COHESION

FLOCKING

SEPARATION
COLLISION

AVOIDANCE

FLOCKING-CA-GS

GOALSEEK

(b) 3-level hierarchy reusing one composite behavior

ALIGNMENT COHESION

FLOCKING

SEPARATION
COLLISION

AVOIDANCE

FLOCKING-CA-GS

GOALSEEK

CA-GS

(c) 3-level hierarchy reusing two composite behaviors

Fig. 5. Three alternatives for implementing the FLOCKING-CA-GS composite behavior are
shown. Each is similar to the corresponding hierarchy for the FLOCKING-CA composite task
with the addition of the GOALSEEK primitive behavior

4. Development of Controllers

A standard approach to such complex tasks is to combine primitive tasks into a single com-
posite task. A policy is then developed for the entire composite task, effectively developing
a single policy responsible for addressing each primitive task and the coordination between
them (see Figure 7(a)). The problem with this monolithic approach is that development of
even the simplest composite task can be impractical due to the curse of dimensionality.

4.1 Modular Reinforcement Learning
Humphrys (1996) and Karlsson (1997) independently describe a reinforcement learning algo-
rithm that is appropriate for the CINE types of problems under study here. In this algorithm,
commonly referred to as modular reinforcement learning (Bhat et al., 2006; Sprague & Ballard,

ALIGNMENT COHESION SEPARATION
COLLISION

AVOIDANCE

FLOCKING-CA-GS-RA

GOALSEEK RUNAWAY

(a) 2-level hierarchy

ALIGNMENT COHESION

FLOCKING

SEPARATION
COLLISION

AVOIDANCE

FLOCKING-CA-GS-RA

GOALSEEK RUNAWAY

(b) 3-level hierarchy reusing one composite behavior

ALIGNMENT COHESION

FLOCKING

SEPARATION
COLLISION

AVOIDANCE

FLOCKING-CA-GS-RA

GOALSEEK

CA-GS-RA

RUNAWAY

(c) 3-level hierarchy reusing two composite behaviors

Fig. 6. Three alternatives for implementing the FLOCKING-CA-GS-RA composite behavior
are shown. Each is similar to the corresponding hierarchy for the FLOCKING-CA-GS compos-
ite task with the addition of the RUNAWAY primitive behavior

2003), a policy for each active primitive task is learned simultaneously using the state informa-
tion and rewards local only to the task (see Figure 7(b)). At each time step, the policy for each
subtask provides the action selection mechanism with a utility value for each possible action.
This utility value is calculated using the value of taking a particular action from a given state,
referred to as a Q-value, and is often simply the Q-value itself. These utilities are then used
by the action selection mechanism to choose the action that the agent will take. The approach
used in this work to choose the action, called the “greatest mass,” simply chooses the action
with the highest utility, or sum of Q-values, across all the primitive task policies (Karlsson,
1997).
Q-learning should not be used in learning the primitive task policies since it is off-policy and
assumes the optimal policy will be followed (Watkins & Dayan, 1992). One cannot assume
that the optimal policy will be followed for modular reinforcement learning since primitive

Autonomous	Agents10

Composite

Task

Collision Avoidance

Primitive Task

Goal Seek

Primitive Task

Action

(a) Monolithic Reinforcement Learning

Collision

Avoidance

Primitive Task

Goal Seek

Primitive Task

Composite

Task

ActionAction

Utilities

(b) Modular Reinforcement Learning

Collision

Avoidance

Primitive Task

Goal Seek

Primitive Task

Composite

Task ∑
Action

Weights
Weighted

Actions

(c) Composite Reinforcement Learning

Fig. 7. A comparison of the different algorithms discussed in this work is shown using the
COLLISIONAVOIDANCE-GOALSEEK composite task. The shaded tasks are where policy learn-
ing occurs in each algorithm. The half-filled circles denote the weights used to compose ac-
tions from primitive task policies for composite reinforcement learning.

task policies must share control of the agent (Russell & Zimdars, 2003; Sprague & Ballard,
2003). As a result, an on-policy learning method, such as the Sarsa algorithm, should be
used (Rummery & Niranjan, 1994).

4.2 Composite Reinforcement Learning
As will be discussed in Section 6.4, experiments demonstrate that modular reinforcement
learning does not perform well in the CINE tasks under study in this chapter. In light of
this result, we introduce a modified reinforcement learning approach called composite rein-
forcement learning (see Figure 7(c)) which can be used to learn effective control policies for
composite tasks built using CINE primitive tasks. Composite reinforcement learning lever-
ages the architecture of the adaptive fuzzy behavior hierarchy to significantly improve the
rate at which effective control policies are learned. Unlike modular reinforcement learning,
composite reinforcement learning does not attempt to learn policies for the primitive tasks
simultaneously. Instead, composite reinforcement learning learns an effective control policy
for a given composite behavior only and reuses existing implementations of lower-level be-
haviors. These reused lower-level behaviors are viewed as black boxes and are modulated
by the policy being learned. Therefore, instead of learning low-level motor control actions,

composite reinforcement learning learns high-level modulation (i.e., weighting) actions on
the lower-level behaviors. The reinforcement learning algorithm itself is largely unmodified
except that the concept of an action has changed. The policy’s actions are now weighting ac-
tions and after the policy’s action has been taken, the lower-level behaviors are executed and
the overall action of the agent is computed. The composite task policy being learned then
determines the total reward and updates the relevant Q-value.
Note that the Q-values used by the learned policy are associated only with the modulation
actions and not with the actions taken by the lower-level behaviors. While this means that the
maximum performance of the learned policy is dependent on the performance of the lower-
level behaviors in their associated tasks, in practice this appears to not present problems (see
Section 6) and offers many benefits over other approaches, such as modular reinforcement
learning.
One of the most significant benefits is the abstraction of the action space into high-level “meta-
actions.” As a result, the reinforcement learner is not required to learn the entire composite
task from scratch. Rather, it only needs to learn how to best coordinate lower-level behaviors
to accomplish the composite task. In a related benefit, existing behaviors can potentially be
reused without modification by the learned policy and without specific requirements on their
implementation method. Composite reinforcement learning does not require reused behav-
iors provide any information to aid in the learning or control process (e.g., Q or utility values).
As a result, individual behaviors can be developed in isolation, simplifying the development
process, using the method most appropriate for the task.
Furthermore, since the action space has been abstracted away from low-level motor control
actions, it may be possible to aggressively abstract the agent’s state for use in the composite
behavior without the corresponding performance penalties commonly associated with per-
ceptual aliasing (Whitehead, 1992). This is especially significant in light of our interest in di-
rectly comparing the effects of state and action abstraction on a controller’s performance and
learning rate. Note that this abstraction of the state only occurs in the composite behaviors;
primitive behaviors still access the unabstracted state associated with the relevant primitive
task to produce control actions.
While the idea of abstracting the action space into meta-actions is not novel and many hi-
erarchical reinforcement learning approaches use it extensively (Dietterich, 2000; Konidaris
& Barto, 2007; Rohanimanesh et al., 2004), our formulation of an action is novel. Since most
approaches focus on episodic and non-interfering tasks, meta-actions in these approaches rep-
resent temporally extended sequences of actions. When a meta-action is executed, the meta-
action assumes control of the agent either for the entire sequence of actions or until an event
causes the high-level policy to re-examine the agent’s state. In contrast, the meta-actions used
by composite reinforcement learning are taken every timestep and represent the coordination
of lower-level behaviors for that timestep only. In general, no one behavior is given complete
control of the agent’s actions.

5. Experiments

To evaluate the effects of state and action abstraction on the process of developing controllers
for composite tasks, a series of experiments were performed in which controllers were auto-
matically developed for each primitive and composite task using reinforcement learning and
grammatical evolution (see Section 3). Experimental runs were evaluated using two different
metrics. The first metric used was the best generalized performance of the agent controllers.
This generalized performance was determined by executing agent controllers in environments

State	and	Action	Abstraction	in	the	Development	of	Agent	Controllers 11

Composite

Task

Collision Avoidance

Primitive Task

Goal Seek

Primitive Task

Action

(a) Monolithic Reinforcement Learning

Collision

Avoidance

Primitive Task

Goal Seek

Primitive Task

Composite

Task

ActionAction

Utilities

(b) Modular Reinforcement Learning

Collision

Avoidance

Primitive Task

Goal Seek

Primitive Task

Composite

Task ∑
Action

Weights
Weighted

Actions

(c) Composite Reinforcement Learning

Fig. 7. A comparison of the different algorithms discussed in this work is shown using the
COLLISIONAVOIDANCE-GOALSEEK composite task. The shaded tasks are where policy learn-
ing occurs in each algorithm. The half-filled circles denote the weights used to compose ac-
tions from primitive task policies for composite reinforcement learning.

task policies must share control of the agent (Russell & Zimdars, 2003; Sprague & Ballard,
2003). As a result, an on-policy learning method, such as the Sarsa algorithm, should be
used (Rummery & Niranjan, 1994).

4.2 Composite Reinforcement Learning
As will be discussed in Section 6.4, experiments demonstrate that modular reinforcement
learning does not perform well in the CINE tasks under study in this chapter. In light of
this result, we introduce a modified reinforcement learning approach called composite rein-
forcement learning (see Figure 7(c)) which can be used to learn effective control policies for
composite tasks built using CINE primitive tasks. Composite reinforcement learning lever-
ages the architecture of the adaptive fuzzy behavior hierarchy to significantly improve the
rate at which effective control policies are learned. Unlike modular reinforcement learning,
composite reinforcement learning does not attempt to learn policies for the primitive tasks
simultaneously. Instead, composite reinforcement learning learns an effective control policy
for a given composite behavior only and reuses existing implementations of lower-level be-
haviors. These reused lower-level behaviors are viewed as black boxes and are modulated
by the policy being learned. Therefore, instead of learning low-level motor control actions,

composite reinforcement learning learns high-level modulation (i.e., weighting) actions on
the lower-level behaviors. The reinforcement learning algorithm itself is largely unmodified
except that the concept of an action has changed. The policy’s actions are now weighting ac-
tions and after the policy’s action has been taken, the lower-level behaviors are executed and
the overall action of the agent is computed. The composite task policy being learned then
determines the total reward and updates the relevant Q-value.
Note that the Q-values used by the learned policy are associated only with the modulation
actions and not with the actions taken by the lower-level behaviors. While this means that the
maximum performance of the learned policy is dependent on the performance of the lower-
level behaviors in their associated tasks, in practice this appears to not present problems (see
Section 6) and offers many benefits over other approaches, such as modular reinforcement
learning.
One of the most significant benefits is the abstraction of the action space into high-level “meta-
actions.” As a result, the reinforcement learner is not required to learn the entire composite
task from scratch. Rather, it only needs to learn how to best coordinate lower-level behaviors
to accomplish the composite task. In a related benefit, existing behaviors can potentially be
reused without modification by the learned policy and without specific requirements on their
implementation method. Composite reinforcement learning does not require reused behav-
iors provide any information to aid in the learning or control process (e.g., Q or utility values).
As a result, individual behaviors can be developed in isolation, simplifying the development
process, using the method most appropriate for the task.
Furthermore, since the action space has been abstracted away from low-level motor control
actions, it may be possible to aggressively abstract the agent’s state for use in the composite
behavior without the corresponding performance penalties commonly associated with per-
ceptual aliasing (Whitehead, 1992). This is especially significant in light of our interest in di-
rectly comparing the effects of state and action abstraction on a controller’s performance and
learning rate. Note that this abstraction of the state only occurs in the composite behaviors;
primitive behaviors still access the unabstracted state associated with the relevant primitive
task to produce control actions.
While the idea of abstracting the action space into meta-actions is not novel and many hi-
erarchical reinforcement learning approaches use it extensively (Dietterich, 2000; Konidaris
& Barto, 2007; Rohanimanesh et al., 2004), our formulation of an action is novel. Since most
approaches focus on episodic and non-interfering tasks, meta-actions in these approaches rep-
resent temporally extended sequences of actions. When a meta-action is executed, the meta-
action assumes control of the agent either for the entire sequence of actions or until an event
causes the high-level policy to re-examine the agent’s state. In contrast, the meta-actions used
by composite reinforcement learning are taken every timestep and represent the coordination
of lower-level behaviors for that timestep only. In general, no one behavior is given complete
control of the agent’s actions.

5. Experiments

To evaluate the effects of state and action abstraction on the process of developing controllers
for composite tasks, a series of experiments were performed in which controllers were auto-
matically developed for each primitive and composite task using reinforcement learning and
grammatical evolution (see Section 3). Experimental runs were evaluated using two different
metrics. The first metric used was the best generalized performance of the agent controllers.
This generalized performance was determined by executing agent controllers in environments

Autonomous	Agents12

that were different than the ones used in their development. The controller’s performance was
the mean undiscounted, total reward of the agent in all the environments. The second metric
used was the computational effort used to develop the controllers and used the number of
updates to the Q-values as the measure.

5.1 Evaluation Environments
For each composite task, forty environments were randomly generated. Agents were given
random positions and orientations within a specified region of the environment. If a goal
location was required, it was randomly placed within a specified distance interval from the
agent(s). If obstacles were required, a random number of obstacles were generated and given
random positions in an area surrounding the agent(s) and goal location. The same procedure
was followed for hazardous objects, if required. These forty environments were organized
into ten folds of four environments each for use in cross-validation (Cohen, 1995). Eight folds
were used as a training set, one fold was used as a validation set, and a final fold was used as
a testing set. Both validation and testing sets were used to evaluate the generalizability of the
learned controller.
Each experiment consisted for forty individual runs initialized with a different random seed.
Four experimental runs for each of the ten folds were performed. The same set of environ-
ments was shared between all experiments for a given primitive or composite task, while
folds had different sets of training, validation, and testing environments. For example, all
experiments using the two-dimensional CA-GS composite task shared the same set of envi-
ronments, regardless of how the controller was developed or the architecture it used.
Agents were given a maximum of 1,500 time steps in each environment which constituted a
single training episode. This was ample time for even the most risk-averse agent(s) to reach
the goal location, if applicable, or to gain sufficient experience in the environment. While most
of the primitive tasks used are non-episodic (the exception being the GOALSEEK primitive
task), training was broken into episodes as a consequence of the nature of the evaluation
environments and the primitive tasks themselves. Since the environments were unbounded,
it was possible that in exploring the state space, agents could wander away from the finite
number of obstacles or the other agents on the team and never have a realistic opportunity to
return to the more “interesting” states of the environment. Furthermore, since much of this
work is intended to operate on real robots, agent collisions warranted early termination of
a training episode. Training episodes also ended early when an agent or the team of agents
reached the goal location since the GOALSEEK task is inherently episodic.

5.2 State Space Abstraction
Since it is possible that composite behaviors in fuzzy behavior hierarchies do not require the
full state space for effective coordination of lower-level behaviors, four different levels of ab-
straction of the agent’s state space were used when learning composite behaviors. These were
used to evaluate how abstractions affected both the rate at which effective composite behav-
iors were learned and their quality. Table 1 details the effects of each abstraction level on the
state information for a composite behavior using the GOALSEEK primitive task.

Full This state space represents the original, joint state space of all the primitive tasks used in
the composite task without any abstraction and acts as a baseline for comparison.

Large In this state space, state information describing directions, such as SMALL_LEFT or
SMALL_RIGHT, are abstracted away into variables which denote the absolute value

Abstraction Level State Information States Total States

Full
Goal arrival time 5

175Goal direction Θ 7
Goal direction Φ 5

Large
Goal arrival time 5

125Goal direction |Θ| 5
Goal direction |Φ| 5

Small Goal seek priority 5 5

Table 1. The different state abstractions used in the development of a composite behavior
using the GOALSEEK primitive task are shown.

of the angle, such as SMALL. State information not describing a direction remains un-
changed.

Small In this state space, state information is abstracted into a single dynamic priority which
is calculated using all the relevant state information local to each primitive task. This
dynamic priority represented the task’s determination of its applicability to the agent’s
current state. For example, using this state space, the CA-GS-RA composite behavior
would only use dynamic priorities for the primitive behaviors COLLISIONAVOIDANCE,
GOALSEEK, and RUNAWAY to determine how to weight its sub-behaviors. While this
level of abstraction may appear to be too extreme, we have previously shown that rule-
sets using dynamic priorities can be developed which have similar performance to those
using the Full state space (Eskridge & Hougen, 2006).

Minimal In this state space, the dynamic priorities from the Small state space were again
used. However, instead of using the dynamic priorities for every primitive behavior,
only the priorities of behaviors directly weighted by a composite behavior were used.
For example, the FLOCKING-CA composite behavior would only use the dynamic pri-
orities of the FLOCKING and COLLISIONAVOIDANCE sub-behaviors.

Note that these abstractions were only used by composite behaviors. Since primitive behav-
iors were responsible for producing low-level control actions, they still required the unab-
stracted state space relevant to their primitive task. Furthermore, since monolithic controllers
were also responsible for producing low-level control actions, they required the unabstracted
joint state space of the overall composite task.

5.3 Reward Functions
The reward functions for each primitive task as used in the development of composite tasks
are shown in Table 2. Except for the terminal events of a collision or reaching the goal location,
each reward was given per timestep. The reward values were developed with the maximum
number of timesteps in mind and ensured that the total undiscounted reward did not create
a bias towards controllers which “minimized the pain” by causing a collision as quickly as
possible. While some portions of the reward function were not required (e.g., the goal dis-
tance penalty), they make the reward function more “dense” and act as progress estimators
by allowing learning to make the most of each experience (Matarić, 1997; Smart & Kaelbling,
2002). While the addition of these unrequired components may have biased policies away

State	and	Action	Abstraction	in	the	Development	of	Agent	Controllers 13

that were different than the ones used in their development. The controller’s performance was
the mean undiscounted, total reward of the agent in all the environments. The second metric
used was the computational effort used to develop the controllers and used the number of
updates to the Q-values as the measure.

5.1 Evaluation Environments
For each composite task, forty environments were randomly generated. Agents were given
random positions and orientations within a specified region of the environment. If a goal
location was required, it was randomly placed within a specified distance interval from the
agent(s). If obstacles were required, a random number of obstacles were generated and given
random positions in an area surrounding the agent(s) and goal location. The same procedure
was followed for hazardous objects, if required. These forty environments were organized
into ten folds of four environments each for use in cross-validation (Cohen, 1995). Eight folds
were used as a training set, one fold was used as a validation set, and a final fold was used as
a testing set. Both validation and testing sets were used to evaluate the generalizability of the
learned controller.
Each experiment consisted for forty individual runs initialized with a different random seed.
Four experimental runs for each of the ten folds were performed. The same set of environ-
ments was shared between all experiments for a given primitive or composite task, while
folds had different sets of training, validation, and testing environments. For example, all
experiments using the two-dimensional CA-GS composite task shared the same set of envi-
ronments, regardless of how the controller was developed or the architecture it used.
Agents were given a maximum of 1,500 time steps in each environment which constituted a
single training episode. This was ample time for even the most risk-averse agent(s) to reach
the goal location, if applicable, or to gain sufficient experience in the environment. While most
of the primitive tasks used are non-episodic (the exception being the GOALSEEK primitive
task), training was broken into episodes as a consequence of the nature of the evaluation
environments and the primitive tasks themselves. Since the environments were unbounded,
it was possible that in exploring the state space, agents could wander away from the finite
number of obstacles or the other agents on the team and never have a realistic opportunity to
return to the more “interesting” states of the environment. Furthermore, since much of this
work is intended to operate on real robots, agent collisions warranted early termination of
a training episode. Training episodes also ended early when an agent or the team of agents
reached the goal location since the GOALSEEK task is inherently episodic.

5.2 State Space Abstraction
Since it is possible that composite behaviors in fuzzy behavior hierarchies do not require the
full state space for effective coordination of lower-level behaviors, four different levels of ab-
straction of the agent’s state space were used when learning composite behaviors. These were
used to evaluate how abstractions affected both the rate at which effective composite behav-
iors were learned and their quality. Table 1 details the effects of each abstraction level on the
state information for a composite behavior using the GOALSEEK primitive task.

Full This state space represents the original, joint state space of all the primitive tasks used in
the composite task without any abstraction and acts as a baseline for comparison.

Large In this state space, state information describing directions, such as SMALL_LEFT or
SMALL_RIGHT, are abstracted away into variables which denote the absolute value

Abstraction Level State Information States Total States

Full
Goal arrival time 5

175Goal direction Θ 7
Goal direction Φ 5

Large
Goal arrival time 5

125Goal direction |Θ| 5
Goal direction |Φ| 5

Small Goal seek priority 5 5

Table 1. The different state abstractions used in the development of a composite behavior
using the GOALSEEK primitive task are shown.

of the angle, such as SMALL. State information not describing a direction remains un-
changed.

Small In this state space, state information is abstracted into a single dynamic priority which
is calculated using all the relevant state information local to each primitive task. This
dynamic priority represented the task’s determination of its applicability to the agent’s
current state. For example, using this state space, the CA-GS-RA composite behavior
would only use dynamic priorities for the primitive behaviors COLLISIONAVOIDANCE,
GOALSEEK, and RUNAWAY to determine how to weight its sub-behaviors. While this
level of abstraction may appear to be too extreme, we have previously shown that rule-
sets using dynamic priorities can be developed which have similar performance to those
using the Full state space (Eskridge & Hougen, 2006).

Minimal In this state space, the dynamic priorities from the Small state space were again
used. However, instead of using the dynamic priorities for every primitive behavior,
only the priorities of behaviors directly weighted by a composite behavior were used.
For example, the FLOCKING-CA composite behavior would only use the dynamic pri-
orities of the FLOCKING and COLLISIONAVOIDANCE sub-behaviors.

Note that these abstractions were only used by composite behaviors. Since primitive behav-
iors were responsible for producing low-level control actions, they still required the unab-
stracted state space relevant to their primitive task. Furthermore, since monolithic controllers
were also responsible for producing low-level control actions, they required the unabstracted
joint state space of the overall composite task.

5.3 Reward Functions
The reward functions for each primitive task as used in the development of composite tasks
are shown in Table 2. Except for the terminal events of a collision or reaching the goal location,
each reward was given per timestep. The reward values were developed with the maximum
number of timesteps in mind and ensured that the total undiscounted reward did not create
a bias towards controllers which “minimized the pain” by causing a collision as quickly as
possible. While some portions of the reward function were not required (e.g., the goal dis-
tance penalty), they make the reward function more “dense” and act as progress estimators
by allowing learning to make the most of each experience (Matarić, 1997; Smart & Kaelbling,
2002). While the addition of these unrequired components may have biased policies away

Autonomous	Agents14

Primitive Task Description Value

COLLISIONAVOIDANCE Collision event -150

GOALSEEK
Goal reached event 150
Goal distance penalty −0.03 × Dist

RUNAWAY RunAway strength penalty −0.06 × Str
ALIGNMENT Velocity heading difference penalty −0.02 × ∆Dir
COHESION Position error penalty −0.04 × Dist
SEPARATION Separation strength penalty −0.02 × Str

Table 2. The reward functions used in developing controllers for composite tasks for each
primitive task are shown. Note that while most rewards were given at each timestep, rewards
for the terminal events of a collision and reaching the goal location are one-time rewards.

from the best solution, the benefit of allowing learning to make the most of each learning ex-
perience outweighed the potential problems in complex tasks such as the ones discussed in
this chapter.
For the FLOCKING composite task, a survival reward of 0.09 was given for each timestep in
which the agents were active, in addition to the rewards given by the primitive tasks them-
selves. This served to explicitly reward the agents for avoiding collisions with other agents
and continuing to flock. In single agent environments, the agent merely needed to reach the
goal for the reward to be given. In multi-agent environments, the reward for reaching the goal
location was only awarded if the mean position of the team was within a specified distance to
the goal. This served to explicitly reward agents that reached the goal with the other agents
in the team and not agents that left their team to reach the goal faster.
Due to the complexity of the tasks and the randomness of the environments, an optimal per-
formance value for each task would be prohibitive to calculate. As a result, the performance
of learned controllers cannot be compared to the performance of an optimal controller. How-
ever, based on an understanding of the experimental configuration and experience with the
tasks themselves, we can identify the approximate mean performance values one would ex-
pect from an effective controller.

5.4 Reinforcement Learning Configuration
The Sarsa reinforcement learning algorithm was used to learn policies for primitive and com-
posite tasks. To speed learning, the replacing eligibility traces version of Sarsa, referred to
as Sarsa(λ), was used (Sutton & Barto, 1998). The parameters used are shown in Table 3.
Since the state-action space for many of the experiments performed precluded tabular storage
of the state-action values, or Q-values, neural networks were used to approximate Q-values.
The neural networks consisted of a single hidden layer in which the number of nodes was
a function of the number of input nodes. Unlike previous work, we found that a relatively
large number of hidden nodes (1.5 times the number of input nodes) were required for poli-
cies operating in our environments (Rummery & Niranjan, 1994). Previous work in the field
has concluded that using a single network to approximate all the Q-values can result in unin-
tentional modifications of the Q-values for actions other than the one chosen by the learning
algorithm (Lin, 1993; Rummery & Niranjan, 1994). As a result, a separate network for each
action was used in an effort to isolate the Q-values of each action.

Parameter Value

Learning rate (α) 0.01
Discount factor (γ) 0.99
TD decay (λ) 0.25
Exploration (ε) 0.01
NN weight range [−0.25 : 0.25]
NN momentum 0.01
NN hidden nodes 1.5 × Ninput

Table 3. Reinforcement learning parameters

The effects of a multi-agent environment further complicates learning as it makes the environ-
ment non-stationary (Claus & Boutilier, 1998). To simplify the process as much as possible,
we chose to use the naïve approach in which all agents used and updated the same set of
Q-values, or, more specifically, the same set of neural networks approximating Q-values. Ex-
periments have shown that this form of cooperation does not impede learning and can even
improve the learning rate (Crites & Barto, 1998; Tan, 1993).
While there are techniques for using fuzzy logic with reinforcement learning (Berenji, 1992;
Er & Zhou, 2006; Glorennec & Jouffe, 1997; Jouffe, 1998), experience has shown that such
modifications can increase the time needed to learn effective policies. Since fuzzy logic is not
required to implement the behaviors (Tunstel, 2001), it was not used for behaviors developed
using reinforcement learning. However, primitive behaviors that were developed manually
and reused for development of composite behaviors did use fuzzy logic. While there are
plans to use fuzzy logic with reinforcement learning (see Section 7), we were able to gather
conclusive results without its use.

6. Results and Analysis

Figures showing the results of experimental runs reflect the mean performance of controllers
on the validation set of environments. As stated in Section 5.1, environments were organized
into ten folds for use with cross-validation. Each experiment consisted of four runs for each
of the ten fold combinations for a total of 40 runs.

6.1 Developing Single-Agent, Composite Task Controllers
Figures 8 and 9 depict the results of learning for the CA-GS and CA-GS-RA composite tasks,
respectively. For controllers developed using the Full and Large abstraction levels, composite
reinforcement learning was able to achieve high performance within just a few updates for
both tasks. However, the Small abstraction level was unable to converge to an effective pol-
icy in either task, although effective policies were learned. While monolithic reinforcement
learning was able to learn an effective policy, results of a randomized two-way ANOVA test
demonstrates that there was a statistically significantly difference between the rate at which
effective controllers were learned between monolithic and composite reinforcement learning
at the 95% confidence level. Modular reinforcement learning was unable to converge to an ef-
fective policy. It was able to achieve moderate success early and learned a number of effective
policies, but was unable to converge to one.

State	and	Action	Abstraction	in	the	Development	of	Agent	Controllers 15

Primitive Task Description Value

COLLISIONAVOIDANCE Collision event -150

GOALSEEK
Goal reached event 150
Goal distance penalty −0.03 × Dist

RUNAWAY RunAway strength penalty −0.06 × Str
ALIGNMENT Velocity heading difference penalty −0.02 × ∆Dir
COHESION Position error penalty −0.04 × Dist
SEPARATION Separation strength penalty −0.02 × Str

Table 2. The reward functions used in developing controllers for composite tasks for each
primitive task are shown. Note that while most rewards were given at each timestep, rewards
for the terminal events of a collision and reaching the goal location are one-time rewards.

from the best solution, the benefit of allowing learning to make the most of each learning ex-
perience outweighed the potential problems in complex tasks such as the ones discussed in
this chapter.
For the FLOCKING composite task, a survival reward of 0.09 was given for each timestep in
which the agents were active, in addition to the rewards given by the primitive tasks them-
selves. This served to explicitly reward the agents for avoiding collisions with other agents
and continuing to flock. In single agent environments, the agent merely needed to reach the
goal for the reward to be given. In multi-agent environments, the reward for reaching the goal
location was only awarded if the mean position of the team was within a specified distance to
the goal. This served to explicitly reward agents that reached the goal with the other agents
in the team and not agents that left their team to reach the goal faster.
Due to the complexity of the tasks and the randomness of the environments, an optimal per-
formance value for each task would be prohibitive to calculate. As a result, the performance
of learned controllers cannot be compared to the performance of an optimal controller. How-
ever, based on an understanding of the experimental configuration and experience with the
tasks themselves, we can identify the approximate mean performance values one would ex-
pect from an effective controller.

5.4 Reinforcement Learning Configuration
The Sarsa reinforcement learning algorithm was used to learn policies for primitive and com-
posite tasks. To speed learning, the replacing eligibility traces version of Sarsa, referred to
as Sarsa(λ), was used (Sutton & Barto, 1998). The parameters used are shown in Table 3.
Since the state-action space for many of the experiments performed precluded tabular storage
of the state-action values, or Q-values, neural networks were used to approximate Q-values.
The neural networks consisted of a single hidden layer in which the number of nodes was
a function of the number of input nodes. Unlike previous work, we found that a relatively
large number of hidden nodes (1.5 times the number of input nodes) were required for poli-
cies operating in our environments (Rummery & Niranjan, 1994). Previous work in the field
has concluded that using a single network to approximate all the Q-values can result in unin-
tentional modifications of the Q-values for actions other than the one chosen by the learning
algorithm (Lin, 1993; Rummery & Niranjan, 1994). As a result, a separate network for each
action was used in an effort to isolate the Q-values of each action.

Parameter Value

Learning rate (α) 0.01
Discount factor (γ) 0.99
TD decay (λ) 0.25
Exploration (ε) 0.01
NN weight range [−0.25 : 0.25]
NN momentum 0.01
NN hidden nodes 1.5 × Ninput

Table 3. Reinforcement learning parameters

The effects of a multi-agent environment further complicates learning as it makes the environ-
ment non-stationary (Claus & Boutilier, 1998). To simplify the process as much as possible,
we chose to use the naïve approach in which all agents used and updated the same set of
Q-values, or, more specifically, the same set of neural networks approximating Q-values. Ex-
periments have shown that this form of cooperation does not impede learning and can even
improve the learning rate (Crites & Barto, 1998; Tan, 1993).
While there are techniques for using fuzzy logic with reinforcement learning (Berenji, 1992;
Er & Zhou, 2006; Glorennec & Jouffe, 1997; Jouffe, 1998), experience has shown that such
modifications can increase the time needed to learn effective policies. Since fuzzy logic is not
required to implement the behaviors (Tunstel, 2001), it was not used for behaviors developed
using reinforcement learning. However, primitive behaviors that were developed manually
and reused for development of composite behaviors did use fuzzy logic. While there are
plans to use fuzzy logic with reinforcement learning (see Section 7), we were able to gather
conclusive results without its use.

6. Results and Analysis

Figures showing the results of experimental runs reflect the mean performance of controllers
on the validation set of environments. As stated in Section 5.1, environments were organized
into ten folds for use with cross-validation. Each experiment consisted of four runs for each
of the ten fold combinations for a total of 40 runs.

6.1 Developing Single-Agent, Composite Task Controllers
Figures 8 and 9 depict the results of learning for the CA-GS and CA-GS-RA composite tasks,
respectively. For controllers developed using the Full and Large abstraction levels, composite
reinforcement learning was able to achieve high performance within just a few updates for
both tasks. However, the Small abstraction level was unable to converge to an effective pol-
icy in either task, although effective policies were learned. While monolithic reinforcement
learning was able to learn an effective policy, results of a randomized two-way ANOVA test
demonstrates that there was a statistically significantly difference between the rate at which
effective controllers were learned between monolithic and composite reinforcement learning
at the 95% confidence level. Modular reinforcement learning was unable to converge to an ef-
fective policy. It was able to achieve moderate success early and learned a number of effective
policies, but was unable to converge to one.

Autonomous	Agents16

-50

 0

 50

 100

 150

 0 25 50 75

M
ea

n
R

ew
ar

d
pe

r E
pi

so
de

Updates (x 106)

MonolithicRL
ModularRL

CompositeRL (Full)
CompositeRL (Large)
CompositeRL (Small)

Fig. 8. Reinforcement learning results on the validation set environments for the CA-GS com-
posite task are shown.

-50

 0

 50

 100

 150

 0 25 50 75 100

M
ea

n
R

ew
ar

d
pe

r E
pi

so
de

Updates (x 106)

MonolithicRL
ModularRL

CompositeRL (Full)
CompositeRL (Large)
CompositeRL (Small)

Fig. 9. Reinforcement learning results on the validation set environments for the CA-GS-RA
composite task are shown.

6.2 Developing Multi-Agent, Composite Task Controllers
Figure 10 depicts the results of using reinforcement learning to learn a policy for the FLOCK-
ING composite task. Controllers developed using the adaptive fuzzy behavior hierarchy
and composite reinforcement learning had statistically significantly higher performance than
those developed using either monolithic or modular reinforcement learning at the 95% con-
fidence level. Furthermore, controllers using the Small abstraction level did not exhibit the
poor performance previously seen in the single agent tasks. In fact, controllers using the Small
abstraction level had statistically significantly better performance than all other controllers in
the testing set environments at the 99% confidence level as determined by the paired Student’s
t-test using the Bonferroni adjustment.

-50

 0

 50

 0 25 50 75 100

M
ea

n
R

ew
ar

d
pe

r E
pi

so
de

Updates (x 106)

MonolithicRL
ModularRL

CompositeRL (Full)
CompositeRL (Large)
CompositeRL (Small)

Fig. 10. Reinforcement learning results on the validation set environments for the FLOCKING
composite task are shown.

-150

-100

-50

 0

 0 25 50 75 100

M
ea

n
R

ew
ar

d
pe

r E
pi

so
de

Updates (x 106)

MonolithicRL
ModularRL

CompositeRL (Full - 3)
CompositeRL (Large - 3)
CompositeRL (Small - 3)

CompositeRL (Minimal - 3)

Fig. 11. Reinforcement learning results on the validation set environments for the FLOCKING-
CA composite task are shown. Due to storage constraints, results for monolithic reinforce-
ment learning experimental runs used fewer checkpoints than other experimental runs.

Figure 11 depicts the results of using reinforcement learning to learn a policy for the
FLOCKING-CA composite task. Again, controllers that used the adaptive fuzzy behavior
hierarchy were learned faster than those that didn’t use the hierarchy and had higher per-
formance. Note, that these controllers used the three-level hierarchy depicted in Figure 5(c).
Controllers developed using modular reinforcement learning performed statistically signifi-
cantly better than those developed using monolithic reinforcement learning at the 99% con-
fidence level, but were unable to generalize to the full range of environments present in the
validation or testing sets.
Not shown in the figure are the results for controllers using a two-level adaptive fuzzy behav-
ior hierarchy. Even with the use of the adaptive fuzzy behavior hierarchy, the significantly

State	and	Action	Abstraction	in	the	Development	of	Agent	Controllers 17

-50

 0

 50

 100

 150

 0 25 50 75

M
ea

n
R

ew
ar

d
pe

r E
pi

so
de

Updates (x 106)

MonolithicRL
ModularRL

CompositeRL (Full)
CompositeRL (Large)
CompositeRL (Small)

Fig. 8. Reinforcement learning results on the validation set environments for the CA-GS com-
posite task are shown.

-50

 0

 50

 100

 150

 0 25 50 75 100

M
ea

n
R

ew
ar

d
pe

r E
pi

so
de

Updates (x 106)

MonolithicRL
ModularRL

CompositeRL (Full)
CompositeRL (Large)
CompositeRL (Small)

Fig. 9. Reinforcement learning results on the validation set environments for the CA-GS-RA
composite task are shown.

6.2 Developing Multi-Agent, Composite Task Controllers
Figure 10 depicts the results of using reinforcement learning to learn a policy for the FLOCK-
ING composite task. Controllers developed using the adaptive fuzzy behavior hierarchy
and composite reinforcement learning had statistically significantly higher performance than
those developed using either monolithic or modular reinforcement learning at the 95% con-
fidence level. Furthermore, controllers using the Small abstraction level did not exhibit the
poor performance previously seen in the single agent tasks. In fact, controllers using the Small
abstraction level had statistically significantly better performance than all other controllers in
the testing set environments at the 99% confidence level as determined by the paired Student’s
t-test using the Bonferroni adjustment.

-50

 0

 50

 0 25 50 75 100

M
ea

n
R

ew
ar

d
pe

r E
pi

so
de

Updates (x 106)

MonolithicRL
ModularRL

CompositeRL (Full)
CompositeRL (Large)
CompositeRL (Small)

Fig. 10. Reinforcement learning results on the validation set environments for the FLOCKING
composite task are shown.

-150

-100

-50

 0

 0 25 50 75 100

M
ea

n
R

ew
ar

d
pe

r E
pi

so
de

Updates (x 106)

MonolithicRL
ModularRL

CompositeRL (Full - 3)
CompositeRL (Large - 3)
CompositeRL (Small - 3)

CompositeRL (Minimal - 3)

Fig. 11. Reinforcement learning results on the validation set environments for the FLOCKING-
CA composite task are shown. Due to storage constraints, results for monolithic reinforce-
ment learning experimental runs used fewer checkpoints than other experimental runs.

Figure 11 depicts the results of using reinforcement learning to learn a policy for the
FLOCKING-CA composite task. Again, controllers that used the adaptive fuzzy behavior
hierarchy were learned faster than those that didn’t use the hierarchy and had higher per-
formance. Note, that these controllers used the three-level hierarchy depicted in Figure 5(c).
Controllers developed using modular reinforcement learning performed statistically signifi-
cantly better than those developed using monolithic reinforcement learning at the 99% con-
fidence level, but were unable to generalize to the full range of environments present in the
validation or testing sets.
Not shown in the figure are the results for controllers using a two-level adaptive fuzzy behav-
ior hierarchy. Even with the use of the adaptive fuzzy behavior hierarchy, the significantly

Autonomous	Agents18

-150

-100

-50

 0

 50

 100

 150

 0 25 50 75 100

M
ea

n
R

ew
ar

d
pe

r E
pi

so
de

Updates (x 106)

MonolithicRL
ModularRL

CompositeRL (Full - 3)
CompositeRL (Large - 3)
CompositeRL (Small - 3)

CompositeRL (Minimal - 3)

Fig. 12. Reinforcement learning results on the validation set environments for the FLOCKING-
CA-GS composite task in two dimensions are shown. The “3” denotes controllers using a
three-level behavior hierarchy. The results of controllers using two-level hierarchies are not
shown to improve clarity.

larger action space of the 2-level hierarchy negated any benefits that the hierarchy offered.
While the hierarchy and the reuse of existing primitive behaviors meant that it did not need
to learn the low-level actions needed to accomplish FLOCKING-CA, the size of the state-action
space was simply too large to quickly find an effective policy. Furthermore, the increased
complexity resulted in almost a four-fold increase in the wall-clock time required to learn and
update Q-values for the two-level hierarchies over that of the three-level hierarchies.
Figure 12 depicts the results of using reinforcement learning to learn a policy for the
FLOCKING-CA-GS composite task. Just as in the previous experiments, controllers learned
using composite reinforcement learning and using the adaptive fuzzy behavior hierarchy had
a statistically significantly higher “best-of-run” performance than monolithic reinforcement
learning at the 99% confidence level as monolithic reinforcement learning was even unable to
learn how to simply avoid a collision. Controllers developed using modular reinforcement
learning were able to gain some traction in learning an effective controller, but were unable
to converge to an effective policy. Note that just as in the single-agent composite tasks, con-
trollers developed using the Small abstraction level performed statistically significantly worse
than other controllers developed using the adaptive fuzzy behavior hierarchy, including those
using the Minimal abstraction level which also uses adaptive priorities.
This is the first set of results in which a difference between controllers using the different ab-
straction levels can be observed. Results of two-way randomized ANOVA tests show that
controllers using the Minimal abstraction level were able to more statistically significantly
achieve consistently higher performance than controllers using the other abstraction levels at
the 95% confidence level. However, controllers using the Full abstraction level were able to
learn a policy at some point during learning that had statistically significantly better perfor-
mance than controllers using the Minimal abstraction level at the 99% confidence level.
Figure 13 depicts the results of using reinforcement learning to learn a policy for the
FLOCKING-CA-GS-RA composite task. These results detail, for the first time, a clear separa-
tion in the performance of controllers using the various abstraction levels. Randomized two-

-150

-100

-50

 0

 50

 100

 150

 0 50 100 150 200

M
ea

n
R

ew
ar

d
pe

r E
pi

so
de

Updates (x 106)

CompositeRL (Full - 3)
CompositeRL (Large - 3)
CompositeRL (Small - 3)

CompositeRL (Minimal - 3)

Fig. 13. Reinforcement learning results on the validation set environments for the FLOCKING-
CA-GS-RA composite task in two dimensions are shown.

way ANOVA tests show that, like the FLOCKING-CA-GS composite task, controllers using
the Minimal abstraction level were able to more statistically significantly achieve consistently
higher performance than controllers using the other abstraction levels at the 95% confidence
level, but there was no statistically significant difference in the “best-of-run” testing fitness
between controllers using the different abstraction levels. Controllers using the Full abstrac-
tion level had a higher mean reward per episode than controllers using the Small abstraction
level at the 95% confidence level. Monolithic and modular reinforcement learning were not
used to learn controllers due to their consistent poor performance in the simpler, multi-agent
composite tasks.

6.3 Analysis
These results demonstrate that controllers using adaptive fuzzy behavior hierarchies signifi-
cantly outperformed controllers with other architectures in terms of performance, rate of de-
velopment, or both. While there are many reasons for this improvement, we believe that the
central reason for this improvement is the action abstraction that adaptive fuzzy behavior hier-
archies provide. Note that in the CA-GS-RA task, the action space for monolithic controllers
consisted of only two variables: the change in speed and the change of direction. However, for
controllers using composite behaviors, the action space of the composite behavior consisted
of three variables: the weights for the COLLISIONAVOIDANCE, GOALSEEK, and RUNAWAY
primitive behaviors. Despite this increased action space, controllers using composite behav-
iors were developed significantly faster and with significantly better performance. This is due
to the fact that although the action space of the composite behavior was larger, it consisted
of high-level, abstracted “meta-actions” instead of the more complex, low-level control ac-
tions. As has been previously discussed, although other approaches also use the concept of
“meta-actions,” the action abstraction used in this chapter is fundamentally different since the
primitive tasks used were, in general, concurrent, interfering, and non-episodic.
We can conclude that action abstraction is more useful than state abstraction by comparing the
performance of controllers used for the complex, multi-agent composite tasks. In these tasks,
the controller could be designed with a hierarchy that used a single composite behavior or a

State	and	Action	Abstraction	in	the	Development	of	Agent	Controllers 19

-150

-100

-50

 0

 50

 100

 150

 0 25 50 75 100

M
ea

n
R

ew
ar

d
pe

r E
pi

so
de

Updates (x 106)

MonolithicRL
ModularRL

CompositeRL (Full - 3)
CompositeRL (Large - 3)
CompositeRL (Small - 3)

CompositeRL (Minimal - 3)

Fig. 12. Reinforcement learning results on the validation set environments for the FLOCKING-
CA-GS composite task in two dimensions are shown. The “3” denotes controllers using a
three-level behavior hierarchy. The results of controllers using two-level hierarchies are not
shown to improve clarity.

larger action space of the 2-level hierarchy negated any benefits that the hierarchy offered.
While the hierarchy and the reuse of existing primitive behaviors meant that it did not need
to learn the low-level actions needed to accomplish FLOCKING-CA, the size of the state-action
space was simply too large to quickly find an effective policy. Furthermore, the increased
complexity resulted in almost a four-fold increase in the wall-clock time required to learn and
update Q-values for the two-level hierarchies over that of the three-level hierarchies.
Figure 12 depicts the results of using reinforcement learning to learn a policy for the
FLOCKING-CA-GS composite task. Just as in the previous experiments, controllers learned
using composite reinforcement learning and using the adaptive fuzzy behavior hierarchy had
a statistically significantly higher “best-of-run” performance than monolithic reinforcement
learning at the 99% confidence level as monolithic reinforcement learning was even unable to
learn how to simply avoid a collision. Controllers developed using modular reinforcement
learning were able to gain some traction in learning an effective controller, but were unable
to converge to an effective policy. Note that just as in the single-agent composite tasks, con-
trollers developed using the Small abstraction level performed statistically significantly worse
than other controllers developed using the adaptive fuzzy behavior hierarchy, including those
using the Minimal abstraction level which also uses adaptive priorities.
This is the first set of results in which a difference between controllers using the different ab-
straction levels can be observed. Results of two-way randomized ANOVA tests show that
controllers using the Minimal abstraction level were able to more statistically significantly
achieve consistently higher performance than controllers using the other abstraction levels at
the 95% confidence level. However, controllers using the Full abstraction level were able to
learn a policy at some point during learning that had statistically significantly better perfor-
mance than controllers using the Minimal abstraction level at the 99% confidence level.
Figure 13 depicts the results of using reinforcement learning to learn a policy for the
FLOCKING-CA-GS-RA composite task. These results detail, for the first time, a clear separa-
tion in the performance of controllers using the various abstraction levels. Randomized two-

-150

-100

-50

 0

 50

 100

 150

 0 50 100 150 200

M
ea

n
R

ew
ar

d
pe

r E
pi

so
de

Updates (x 106)

CompositeRL (Full - 3)
CompositeRL (Large - 3)
CompositeRL (Small - 3)

CompositeRL (Minimal - 3)

Fig. 13. Reinforcement learning results on the validation set environments for the FLOCKING-
CA-GS-RA composite task in two dimensions are shown.

way ANOVA tests show that, like the FLOCKING-CA-GS composite task, controllers using
the Minimal abstraction level were able to more statistically significantly achieve consistently
higher performance than controllers using the other abstraction levels at the 95% confidence
level, but there was no statistically significant difference in the “best-of-run” testing fitness
between controllers using the different abstraction levels. Controllers using the Full abstrac-
tion level had a higher mean reward per episode than controllers using the Small abstraction
level at the 95% confidence level. Monolithic and modular reinforcement learning were not
used to learn controllers due to their consistent poor performance in the simpler, multi-agent
composite tasks.

6.3 Analysis
These results demonstrate that controllers using adaptive fuzzy behavior hierarchies signifi-
cantly outperformed controllers with other architectures in terms of performance, rate of de-
velopment, or both. While there are many reasons for this improvement, we believe that the
central reason for this improvement is the action abstraction that adaptive fuzzy behavior hier-
archies provide. Note that in the CA-GS-RA task, the action space for monolithic controllers
consisted of only two variables: the change in speed and the change of direction. However, for
controllers using composite behaviors, the action space of the composite behavior consisted
of three variables: the weights for the COLLISIONAVOIDANCE, GOALSEEK, and RUNAWAY
primitive behaviors. Despite this increased action space, controllers using composite behav-
iors were developed significantly faster and with significantly better performance. This is due
to the fact that although the action space of the composite behavior was larger, it consisted
of high-level, abstracted “meta-actions” instead of the more complex, low-level control ac-
tions. As has been previously discussed, although other approaches also use the concept of
“meta-actions,” the action abstraction used in this chapter is fundamentally different since the
primitive tasks used were, in general, concurrent, interfering, and non-episodic.
We can conclude that action abstraction is more useful than state abstraction by comparing the
performance of controllers used for the complex, multi-agent composite tasks. In these tasks,
the controller could be designed with a hierarchy that used a single composite behavior or a

Autonomous	Agents20

hierarchy that made use of multiple composite behaviors in different hierarchical levels. An
example is the three alternatives for implementing the FLOCKING-CA-GS composite behav-
ior shown in Figure 5. Results show that even with significant state abstraction, controllers
using the two-level hierarchy shown in Figure 5(a) were only able to achieve mediocre per-
formance due to the sheer size of the action space. However, effective controllers using the
three-level hierarchy shown in Figure 5(c) were able to be developed without any abstraction
of the agent’s state. It is important to also note that using reinforcement learning to learn con-
trollers using the two-level hierarchy in the FLOCKING-CA-GS task took significantly more
computational time than those using the three-level hierarchy. This is due to the fact that in
the Sarsa algorithm, the Q-value for each of the 3,125 possible actions must be calculated at
each time step. Over the course of the entire experimental run, this resulted in almost a four
fold increase in the wall clock time required to develop controllers using a two-level hierarchy
over those using a three-level hierarchy.
A surprising result is that for many of the composite tasks evaluated, there was no statistically
significant difference between controllers using the various state abstraction levels with the
exception of the Small abstraction level. While the use of abstraction can significantly reduce
the size of the state space, the possibility of over-abstracting the state space and negatively
impacting the controller’s performance exists. However, in general, this was not observed.
Not reflected in these results is the computational effort required to develop the primitive
behaviors used by the controllers using adaptive fuzzy behavior hierarchies. The primitive
behaviors used in these experiments were manually developed and were designed to be effec-
tive, but not optimal. Since the primitive tasks associated with these behaviors are relatively
simple, the process of manually creating these rulesets was straightforward. However, if man-
ually creating the behaviors is impractical, results show that effective policies for the single-
agent behaviors can be easily learned. Even when the the computational effort of creating
the primitive behaviors is included, developing controllers that use adaptive fuzzy behavior
hierarchies is still far more beneficial and practical than the other approaches evaluated.
The performance of controllers developed with composite reinforcement learning and using
the Small abstraction level are of particular interest as it may indicate that we have over-
abstracted the state space. In many of the tasks used, an effective policy could be learned using
the Small abstraction level, but reinforcement learning was unable to converge to an effective
policy. While there are a number of potential reasons for this lack of convergence, we do not
believe this is an inherent problem with the dynamic priorities used by the Small abstraction
level since reinforcement learning converged to effective policies for the FLOCKING task using
the Small abstraction level. There were a number of composite tasks for which controllers
using the Small abstraction level provided effective control. We believe the root cause of the
problem lies with the dynamic priority generated for the GOALSEEK primitive task. In each
composite task using GOALSEEK, the development of controllers using the Small abstraction
level was unable to converge.
To evaluate our hypothesis, we altered the Small abstraction level by replacing the GOALSEEK
adaptive priority with the GOALSEEK state information from the Full abstraction level (i.e.,
the arrival time at and direction to the goal location) and performed a number of the experi-
ments again. The results of these experiments using the altered Small abstraction level were
compared to the results using the original Small abstraction level. The results for the single-
agent composite tasks are shown in Figure 14. Controllers that did not use the GOALSEEK
adaptive priority were learned faster, had higher performance, or both when compared to
controllers which did use the priority. Although not shown, the performance of controllers

-50

 0

 50

 100

 150

 0 25 50 75

M
ea

n
R

ew
ar

d
pe

r E
pi

so
de

Updates (x 106)

CompositeRL (Small)
CompositeRL (Small) - No GoalSeek Priority

(a) CA-GS

-50

 0

 50

 100

 150

 0 25 50 75 100

M
ea

n
R

ew
ar

d
pe

r E
pi

so
de

Updates (x 106)

CompositeRL (Small)
CompositeRL (Small) - No GoalSeek Priority

(b) CA-GS-RA

Fig. 14. Results on the validation set environments for the CA-GS and CA-GS-RA composite
tasks comparing different approaches for the Small abstraction level.

using the modified Small abstraction level were comparable to the performance of the con-
trollers learned using the other abstraction levels. This indicates that the GOALSEEK adaptive
priority was somehow the contributing factor to the low performance in the previous experi-
ments. Exactly why the GOALSEEK adaptive priority causes such problems is unknown and
worthy of future investigation.

6.4 Discussion
As these results demonstrate, neither monolithic or modular reinforcement learning produce
effective controllers as the complexity of the composite task increases. For monolithic re-
inforcement learning, the reason for this inability to gain traction on the problem is that it
simply cannot cope with the complexity of the state space. However, this simple explanation

State	and	Action	Abstraction	in	the	Development	of	Agent	Controllers 21

hierarchy that made use of multiple composite behaviors in different hierarchical levels. An
example is the three alternatives for implementing the FLOCKING-CA-GS composite behav-
ior shown in Figure 5. Results show that even with significant state abstraction, controllers
using the two-level hierarchy shown in Figure 5(a) were only able to achieve mediocre per-
formance due to the sheer size of the action space. However, effective controllers using the
three-level hierarchy shown in Figure 5(c) were able to be developed without any abstraction
of the agent’s state. It is important to also note that using reinforcement learning to learn con-
trollers using the two-level hierarchy in the FLOCKING-CA-GS task took significantly more
computational time than those using the three-level hierarchy. This is due to the fact that in
the Sarsa algorithm, the Q-value for each of the 3,125 possible actions must be calculated at
each time step. Over the course of the entire experimental run, this resulted in almost a four
fold increase in the wall clock time required to develop controllers using a two-level hierarchy
over those using a three-level hierarchy.
A surprising result is that for many of the composite tasks evaluated, there was no statistically
significant difference between controllers using the various state abstraction levels with the
exception of the Small abstraction level. While the use of abstraction can significantly reduce
the size of the state space, the possibility of over-abstracting the state space and negatively
impacting the controller’s performance exists. However, in general, this was not observed.
Not reflected in these results is the computational effort required to develop the primitive
behaviors used by the controllers using adaptive fuzzy behavior hierarchies. The primitive
behaviors used in these experiments were manually developed and were designed to be effec-
tive, but not optimal. Since the primitive tasks associated with these behaviors are relatively
simple, the process of manually creating these rulesets was straightforward. However, if man-
ually creating the behaviors is impractical, results show that effective policies for the single-
agent behaviors can be easily learned. Even when the the computational effort of creating
the primitive behaviors is included, developing controllers that use adaptive fuzzy behavior
hierarchies is still far more beneficial and practical than the other approaches evaluated.
The performance of controllers developed with composite reinforcement learning and using
the Small abstraction level are of particular interest as it may indicate that we have over-
abstracted the state space. In many of the tasks used, an effective policy could be learned using
the Small abstraction level, but reinforcement learning was unable to converge to an effective
policy. While there are a number of potential reasons for this lack of convergence, we do not
believe this is an inherent problem with the dynamic priorities used by the Small abstraction
level since reinforcement learning converged to effective policies for the FLOCKING task using
the Small abstraction level. There were a number of composite tasks for which controllers
using the Small abstraction level provided effective control. We believe the root cause of the
problem lies with the dynamic priority generated for the GOALSEEK primitive task. In each
composite task using GOALSEEK, the development of controllers using the Small abstraction
level was unable to converge.
To evaluate our hypothesis, we altered the Small abstraction level by replacing the GOALSEEK
adaptive priority with the GOALSEEK state information from the Full abstraction level (i.e.,
the arrival time at and direction to the goal location) and performed a number of the experi-
ments again. The results of these experiments using the altered Small abstraction level were
compared to the results using the original Small abstraction level. The results for the single-
agent composite tasks are shown in Figure 14. Controllers that did not use the GOALSEEK
adaptive priority were learned faster, had higher performance, or both when compared to
controllers which did use the priority. Although not shown, the performance of controllers

-50

 0

 50

 100

 150

 0 25 50 75

M
ea

n
R

ew
ar

d
pe

r E
pi

so
de

Updates (x 106)

CompositeRL (Small)
CompositeRL (Small) - No GoalSeek Priority

(a) CA-GS

-50

 0

 50

 100

 150

 0 25 50 75 100

M
ea

n
R

ew
ar

d
pe

r E
pi

so
de

Updates (x 106)

CompositeRL (Small)
CompositeRL (Small) - No GoalSeek Priority

(b) CA-GS-RA

Fig. 14. Results on the validation set environments for the CA-GS and CA-GS-RA composite
tasks comparing different approaches for the Small abstraction level.

using the modified Small abstraction level were comparable to the performance of the con-
trollers learned using the other abstraction levels. This indicates that the GOALSEEK adaptive
priority was somehow the contributing factor to the low performance in the previous experi-
ments. Exactly why the GOALSEEK adaptive priority causes such problems is unknown and
worthy of future investigation.

6.4 Discussion
As these results demonstrate, neither monolithic or modular reinforcement learning produce
effective controllers as the complexity of the composite task increases. For monolithic re-
inforcement learning, the reason for this inability to gain traction on the problem is that it
simply cannot cope with the complexity of the state space. However, this simple explanation

Autonomous	Agents22

does not work for modular reinforcement learning since it was explicitly designed to han-
dle such complexity. While the exact reason for modular reinforcement learning’s inability to
produce effective control policies is unknown and the subject of future research, our work has
illuminated a number of problem areas that could affect its use in developing controllers for
the type of tasks under study in this chapter.
First, modular reinforcement learning makes the implicit assumption that rewards are consis-
tent across all the primitive tasks which complicates the process of learning the policies for
the primitive tasks (Bhat et al., 2006). While the construction of the composite task’s reward
function is designed to promote specific traits in the composite task’s policy (e.g., a risk-averse
policy versus a risk-taking policy), the unintended consequence is that the policies of the prim-
itive tasks show the effects of these traits. This is due to the fact that, in modular reinforcement
learning, all learning takes place in the policies of the primitive tasks. As a result, the policy
for a given primitive task could potentially only be useful in the composite task for which it
was originally learned.
A further potential problem, as modular reinforcement learning is currently implemented, is
that it requires that the policies for primitive tasks provide the learned Q-value for a given
action. Therefore, it is unable to reuse polices developed using methods other than reinforce-
ment learning. While it is possible, in general, to learn the Q-values for an existing policy
offline, this method can produce the same bias in the Q-values that the use of Q-learning pro-
duces since the Q-values must reflect the shared control of the agent. Even though alternative
methods could be used to provide utility values without the use of Q-values (Pirjanian &
Matarić, 2001), modular reinforcement learning still depends on control decisions flowing up
from the low-level policies. As a result, there is no scaling advantage to extending beyond a
two-level hierarchy where learning occurs at the lowest level since the top level merely uses a
simple heuristic to combine the lower-level results.
In light of these difficulties, the success of composite reinforcement learning in these experi-
ments is even more significant. It was the only approach which was consistently able to pro-
duce effective controllers. Furthermore, it was the only approach which was able to produce
effective controllers for the complex FLOCKING-CA-GS-RA task.

7. Conclusion

The most significant result of these experiments is that, in the problem domains used in this
chapter, the abstraction of an agent’s action space provided more tangible benefits in the de-
velopment of agent controllers than abstraction of an agent’s state space. In a direct compar-
ison, controllers that used significant action abstraction and no state abstraction had higher
performance and were developed faster than controllers that made extensive use of state
abstraction and moderate action abstraction. This is due to the fact that action abstraction
changed the focus of the controller from one of low-level control to one of high-level coor-
dination. This change in focus not only made the development of controllers for complex
composite tasks more practical, but in many of the tasks, it also allowed the controller to have
higher performance.
One aspect that is fundamental to the improved performance and rate of development of con-
trollers using adaptive fuzzy behavior hierarchies was the ability to reuse existing primitive
and composite behaviors. The ability to reuse, without modification, behaviors developed
for one task in another task allowed for the development of controllers in individual pieces.
The benefits of this approach are apparent when compared to the other approaches evaluated
in these experiments which attempted to develop a controller all at once. As a result of this

reuse, controllers for complex composite tasks that were once impractical to develop can now
be developed with reasonable effort.
The results of the experiments shown in this work demonstrate that while the use of modular
reinforcement learning has been successful in more constrained problem domains, it was un-
able to consistently produce effective control policies in the problem domains used here. For
the problem domains used, the prospect of simultaneously learning effective policies for each
primitive task proved to be too complicated. In contrast, composite reinforcement learning
was the only approach that was consistently able to produce effective control policies. As dis-
cussed above, we believe that this was due to the use of action abstraction and the ability to
reuse existing primitive behaviors, regardless of their implementation.
The most immediate opportunity for future work is a more in-depth investigation of the er-
ratic behavior of using the Small abstraction level with the GOALSEEK primitive task. The
next opportunity for future work is to use fuzzy reinforcement learning to learn composite
behavior policies instead of the discrete Sarsa approach (Jouffe, 1998). The use of fuzzy rein-
forcement learning offers the potential for faster learning since the agent’s state is no longer
confined to a single discrete value. Lastly, the results of the current work can be used to de-
velop more complex controllers in a variety of ways. One way is to directly use adaptive
fuzzy behavior hierarchies to create far more complicated behavior hierarchies. Since our ul-
timate focus is in the development of agent controllers for use in complex, multi-agent tasks,
the results of this work provide significant contributions in making the development of such
controllers practical.

Acknowledgements

We would like to thank all the members of the AI research group at the University of Okla-
homa for their contributions. We would like to especially thank to John Antonio, Sesh Com-
muri, Andrew Fagg, and Amy McGovern for their input and insights. Some of the computing
for this project was performed at the OU Supercomputing Center for Education & Research
(OSCER) at the University of Oklahoma.

8. References

Berenji, H. R. (1992). A reinforcement learning–based architecture for fuzzy logic control,
International Journal of Approximate Reasoning 6(2): 267–292.

Bhat, S., Isbell Jr., C. L. & Mateas, M. (2006). On the difficulty of modular reinforcement learn-
ing for real-world partial programming, National Conference on Artificial Intelligence
(AAAI), Vol. 21, AAAI Press, pp. 318–325.

Claus, C. & Boutilier, C. (1998). The dynamics of reinforcement learning in cooperative multi-
agent systems, National Conference on Artificial Intelligence (AAAI), pp. 746–752.

Cohen, P. R. (1995). Empirical Methods for Artificial Intelligence, MIT Press, Cambridge, MA,
USA.

Crites, R. H. & Barto, A. G. (1998). Elevator group control using multiple reinforcement learn-
ing agents, Machine Learning 33(2): 235–262.

de Oliveira, L. S., Sabourin, R., Bortolozzi, F. & Suen, C. Y. (2003). A methodology for feature
selection using multiobjective genetic algorithms for handwritten digit string recog-
nition, International Journal of Pattern Recognition and Artificial Intelligence 17(6): 903–
929.

State	and	Action	Abstraction	in	the	Development	of	Agent	Controllers 23

does not work for modular reinforcement learning since it was explicitly designed to han-
dle such complexity. While the exact reason for modular reinforcement learning’s inability to
produce effective control policies is unknown and the subject of future research, our work has
illuminated a number of problem areas that could affect its use in developing controllers for
the type of tasks under study in this chapter.
First, modular reinforcement learning makes the implicit assumption that rewards are consis-
tent across all the primitive tasks which complicates the process of learning the policies for
the primitive tasks (Bhat et al., 2006). While the construction of the composite task’s reward
function is designed to promote specific traits in the composite task’s policy (e.g., a risk-averse
policy versus a risk-taking policy), the unintended consequence is that the policies of the prim-
itive tasks show the effects of these traits. This is due to the fact that, in modular reinforcement
learning, all learning takes place in the policies of the primitive tasks. As a result, the policy
for a given primitive task could potentially only be useful in the composite task for which it
was originally learned.
A further potential problem, as modular reinforcement learning is currently implemented, is
that it requires that the policies for primitive tasks provide the learned Q-value for a given
action. Therefore, it is unable to reuse polices developed using methods other than reinforce-
ment learning. While it is possible, in general, to learn the Q-values for an existing policy
offline, this method can produce the same bias in the Q-values that the use of Q-learning pro-
duces since the Q-values must reflect the shared control of the agent. Even though alternative
methods could be used to provide utility values without the use of Q-values (Pirjanian &
Matarić, 2001), modular reinforcement learning still depends on control decisions flowing up
from the low-level policies. As a result, there is no scaling advantage to extending beyond a
two-level hierarchy where learning occurs at the lowest level since the top level merely uses a
simple heuristic to combine the lower-level results.
In light of these difficulties, the success of composite reinforcement learning in these experi-
ments is even more significant. It was the only approach which was consistently able to pro-
duce effective controllers. Furthermore, it was the only approach which was able to produce
effective controllers for the complex FLOCKING-CA-GS-RA task.

7. Conclusion

The most significant result of these experiments is that, in the problem domains used in this
chapter, the abstraction of an agent’s action space provided more tangible benefits in the de-
velopment of agent controllers than abstraction of an agent’s state space. In a direct compar-
ison, controllers that used significant action abstraction and no state abstraction had higher
performance and were developed faster than controllers that made extensive use of state
abstraction and moderate action abstraction. This is due to the fact that action abstraction
changed the focus of the controller from one of low-level control to one of high-level coor-
dination. This change in focus not only made the development of controllers for complex
composite tasks more practical, but in many of the tasks, it also allowed the controller to have
higher performance.
One aspect that is fundamental to the improved performance and rate of development of con-
trollers using adaptive fuzzy behavior hierarchies was the ability to reuse existing primitive
and composite behaviors. The ability to reuse, without modification, behaviors developed
for one task in another task allowed for the development of controllers in individual pieces.
The benefits of this approach are apparent when compared to the other approaches evaluated
in these experiments which attempted to develop a controller all at once. As a result of this

reuse, controllers for complex composite tasks that were once impractical to develop can now
be developed with reasonable effort.
The results of the experiments shown in this work demonstrate that while the use of modular
reinforcement learning has been successful in more constrained problem domains, it was un-
able to consistently produce effective control policies in the problem domains used here. For
the problem domains used, the prospect of simultaneously learning effective policies for each
primitive task proved to be too complicated. In contrast, composite reinforcement learning
was the only approach that was consistently able to produce effective control policies. As dis-
cussed above, we believe that this was due to the use of action abstraction and the ability to
reuse existing primitive behaviors, regardless of their implementation.
The most immediate opportunity for future work is a more in-depth investigation of the er-
ratic behavior of using the Small abstraction level with the GOALSEEK primitive task. The
next opportunity for future work is to use fuzzy reinforcement learning to learn composite
behavior policies instead of the discrete Sarsa approach (Jouffe, 1998). The use of fuzzy rein-
forcement learning offers the potential for faster learning since the agent’s state is no longer
confined to a single discrete value. Lastly, the results of the current work can be used to de-
velop more complex controllers in a variety of ways. One way is to directly use adaptive
fuzzy behavior hierarchies to create far more complicated behavior hierarchies. Since our ul-
timate focus is in the development of agent controllers for use in complex, multi-agent tasks,
the results of this work provide significant contributions in making the development of such
controllers practical.

Acknowledgements

We would like to thank all the members of the AI research group at the University of Okla-
homa for their contributions. We would like to especially thank to John Antonio, Sesh Com-
muri, Andrew Fagg, and Amy McGovern for their input and insights. Some of the computing
for this project was performed at the OU Supercomputing Center for Education & Research
(OSCER) at the University of Oklahoma.

8. References

Berenji, H. R. (1992). A reinforcement learning–based architecture for fuzzy logic control,
International Journal of Approximate Reasoning 6(2): 267–292.

Bhat, S., Isbell Jr., C. L. & Mateas, M. (2006). On the difficulty of modular reinforcement learn-
ing for real-world partial programming, National Conference on Artificial Intelligence
(AAAI), Vol. 21, AAAI Press, pp. 318–325.

Claus, C. & Boutilier, C. (1998). The dynamics of reinforcement learning in cooperative multi-
agent systems, National Conference on Artificial Intelligence (AAAI), pp. 746–752.

Cohen, P. R. (1995). Empirical Methods for Artificial Intelligence, MIT Press, Cambridge, MA,
USA.

Crites, R. H. & Barto, A. G. (1998). Elevator group control using multiple reinforcement learn-
ing agents, Machine Learning 33(2): 235–262.

de Oliveira, L. S., Sabourin, R., Bortolozzi, F. & Suen, C. Y. (2003). A methodology for feature
selection using multiobjective genetic algorithms for handwritten digit string recog-
nition, International Journal of Pattern Recognition and Artificial Intelligence 17(6): 903–
929.

Autonomous	Agents24

Dietterich, T. G. (2000). An overview of MAXQ hierarchical reinforcement learning, Inter-
national Symposium on Abstraction, Reformulation, and Approximation, Springer-Verlag
London, UK, pp. 26–44.

Driankov, D., Hellendoorn, H. & Reinfrank, M. (1996). An Introduction to Fuzzy Control, second
edn, Springer-Verlag.

Er, M. J. & Zhou, Y. (2006). A novel reinforcement learning approach for automatic generation
of fuzzy inference systems, IEEE International Conference on Fuzzy Systems, Vancouver,
BC, pp. 100–105.

Eskridge, B. E. & Hougen, D. F. (2006). Prioritizing fuzzy behaviors in multi-robot pursuit
teams, IEEE International Conference on Fuzzy Systems, pp. 1119–1125.

Eskridge, B. E. & Hougen, D. F. (2009). Extending adaptive fuzzy behavior hierarchies to mul-
tiple levels, Technical Report TR-OU-REAL-09-001, Department of Computer Science,
University of Oklahoma, Norman, OK.

Glorennec, P. Y. & Jouffe, L. (1997). Fuzzy Q-learning, IEEE International Conference on Fuzzy
Systems, Vol. 2, pp. 659–662.

Guyon, I. & Elisseeff, A. (2003). An introduction to variable and feature selection, Journal of
Machine Learning Research 3: 1157–1182.

Guyon, I., Gunn, S., Nikravesh, M. & Zadeh, L. A. (2006). Feature Extraction: Foundations and
Applications, Studies in Fuzziness and Soft Computing, Springer-Verlag, Secaucus,
NJ, USA.

Humphrys, M. (1996). Action selection methods using reinforcement learning, From Animals
to Animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive
Behavior, MIT Press, Bradford Books, pp. 135–144.

Jouffe, L. (1998). Fuzzy inference system learning by reinforcement methods, IEEE Transactions
on Systems, Man and Cybernetics, Part C 28(3): 338–355.

Karlsson, J. (1997). Learning to Solve Multiple Goals, PhD thesis, University of Rochester,
Rochester, NY, USA.

Konidaris, G. & Barto, A. G. (2007). Building portable options: Skill transfer in reinforcement
learning, International Joint Conference on Artificial Intelligence, pp. 895–900.

Lin, L.-J. (1993). Scaling up reinforcement learning for robot control, International Conference
on Machine Learning, Morgan Kaufmann, pp. 182–189.

Matarić, M. J. (1997). Reinforcement learning in the multi-robot domain, Autonomous Robots
4(1): 73–83.

Pirjanian, P. & Matarić, M. J. (2001). Multiple objective vs. fuzzy behavior coordination, Fuzzy
Logic Techniques for Autonomous Vehicle Navigation, Vol. 61 of Studies in Fuzziness and
Soft Computing, Springer-Phisica Verlag, chapter 10, pp. 235–253.

Raymer, M. L., Punch, W. F., Goodman, E. D., Kuhn, L. A. & Jain, A. K. (2000). Dimensional-
ity reduction using genetic algorithms, IEEE Transactions on Evolutionary Computation
4(2): 164–171.

Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model, Computer
Graphics 21(4): 25–34.

Reynolds, C. W. (1999). Steering behaviors for autonomous characters, Proceedings of the Game
Developers Conference, pp. 763–782.

Rohanimanesh, K., Jr., R. P., Mahadevan, S. & Grupen, R. A. (2004). Coarticulation in Markov
decision processes, Conference on Neural Information Processing Systems, pp. 1137–1144.

Rohanimanesh, K. & Mahadevan, S. (2002). Learning to take concurrent actions, Conference on
Neural Information Processing Systems, MIT Press, pp. 1619–1626.

Rummery, G. A. & Niranjan, M. (1994). On-line Q-learning using connectionist systems, Tech-
nical Report CUED/F-INFENG/TR166, Cambridge University.

Russell, S. J. & Zimdars, A. (2003). Q-decomposition for reinforcement learning agents, Inter-
national Conference on Machine Learning, AAAI Press, pp. 656–663.

Smart, W. D. & Kaelbling, L. P. (2002). Effective reinforcement learning for mobile robots,
International Conference on Robotics and Automation, Vol. 4, IEEE, pp. 3404–3410.

Sprague, N. & Ballard, D. H. (2003). Multiple-goal reinforcement learning with modular
Sarsa(0), International Joint Conference on Artificial Intelligence, pp. 1445–1447.

Sutton, R. S. & Barto, A. G. (1998). Reinforcement Learning: An Introduction, MIT Press.
Tan, M. (1993). Multi-agent reinforcement learning: Independent versus cooperative agents,

International Conference on Machine Learning, pp. 330–337.
Tunstel, E. (1999). Fuzzy-behavior modulation with threshold activation for autonomous ve-

hicle navigation, 18th International Conference of the North American Fuzzy Information
Procesing Society (NAFIPS), New York, NY, pp. 776–780.

Tunstel, E. (2001). Fuzzy-behavior synthesis, coordination, and evolution in an adaptive be-
havior hierarchy, Fuzzy Logic Techniques for Autonomous Vehicle Navigation, Vol. 61 of
Studies in Fuzziness and Soft Computing, Springer-Phisica Verlag, chapter 9, pp. 205–
234.

Watkins, C. J. & Dayan, P. (1992). Q-learning, Machine Learning 8(3-4): 279–292.
Whitehead, S. D. (1992). Reinforcement Learning for the Adaptive Control of Perception and Action,

PhD thesis, University of Rochester.
Yang, J. & Honavar, V. (1998). Feature subset selection using a genetic algorithm, IEEE Intelli-

gent Systems and Their Applications 13(2): 44–49.

State	and	Action	Abstraction	in	the	Development	of	Agent	Controllers 25

Dietterich, T. G. (2000). An overview of MAXQ hierarchical reinforcement learning, Inter-
national Symposium on Abstraction, Reformulation, and Approximation, Springer-Verlag
London, UK, pp. 26–44.

Driankov, D., Hellendoorn, H. & Reinfrank, M. (1996). An Introduction to Fuzzy Control, second
edn, Springer-Verlag.

Er, M. J. & Zhou, Y. (2006). A novel reinforcement learning approach for automatic generation
of fuzzy inference systems, IEEE International Conference on Fuzzy Systems, Vancouver,
BC, pp. 100–105.

Eskridge, B. E. & Hougen, D. F. (2006). Prioritizing fuzzy behaviors in multi-robot pursuit
teams, IEEE International Conference on Fuzzy Systems, pp. 1119–1125.

Eskridge, B. E. & Hougen, D. F. (2009). Extending adaptive fuzzy behavior hierarchies to mul-
tiple levels, Technical Report TR-OU-REAL-09-001, Department of Computer Science,
University of Oklahoma, Norman, OK.

Glorennec, P. Y. & Jouffe, L. (1997). Fuzzy Q-learning, IEEE International Conference on Fuzzy
Systems, Vol. 2, pp. 659–662.

Guyon, I. & Elisseeff, A. (2003). An introduction to variable and feature selection, Journal of
Machine Learning Research 3: 1157–1182.

Guyon, I., Gunn, S., Nikravesh, M. & Zadeh, L. A. (2006). Feature Extraction: Foundations and
Applications, Studies in Fuzziness and Soft Computing, Springer-Verlag, Secaucus,
NJ, USA.

Humphrys, M. (1996). Action selection methods using reinforcement learning, From Animals
to Animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive
Behavior, MIT Press, Bradford Books, pp. 135–144.

Jouffe, L. (1998). Fuzzy inference system learning by reinforcement methods, IEEE Transactions
on Systems, Man and Cybernetics, Part C 28(3): 338–355.

Karlsson, J. (1997). Learning to Solve Multiple Goals, PhD thesis, University of Rochester,
Rochester, NY, USA.

Konidaris, G. & Barto, A. G. (2007). Building portable options: Skill transfer in reinforcement
learning, International Joint Conference on Artificial Intelligence, pp. 895–900.

Lin, L.-J. (1993). Scaling up reinforcement learning for robot control, International Conference
on Machine Learning, Morgan Kaufmann, pp. 182–189.

Matarić, M. J. (1997). Reinforcement learning in the multi-robot domain, Autonomous Robots
4(1): 73–83.

Pirjanian, P. & Matarić, M. J. (2001). Multiple objective vs. fuzzy behavior coordination, Fuzzy
Logic Techniques for Autonomous Vehicle Navigation, Vol. 61 of Studies in Fuzziness and
Soft Computing, Springer-Phisica Verlag, chapter 10, pp. 235–253.

Raymer, M. L., Punch, W. F., Goodman, E. D., Kuhn, L. A. & Jain, A. K. (2000). Dimensional-
ity reduction using genetic algorithms, IEEE Transactions on Evolutionary Computation
4(2): 164–171.

Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model, Computer
Graphics 21(4): 25–34.

Reynolds, C. W. (1999). Steering behaviors for autonomous characters, Proceedings of the Game
Developers Conference, pp. 763–782.

Rohanimanesh, K., Jr., R. P., Mahadevan, S. & Grupen, R. A. (2004). Coarticulation in Markov
decision processes, Conference on Neural Information Processing Systems, pp. 1137–1144.

Rohanimanesh, K. & Mahadevan, S. (2002). Learning to take concurrent actions, Conference on
Neural Information Processing Systems, MIT Press, pp. 1619–1626.

Rummery, G. A. & Niranjan, M. (1994). On-line Q-learning using connectionist systems, Tech-
nical Report CUED/F-INFENG/TR166, Cambridge University.

Russell, S. J. & Zimdars, A. (2003). Q-decomposition for reinforcement learning agents, Inter-
national Conference on Machine Learning, AAAI Press, pp. 656–663.

Smart, W. D. & Kaelbling, L. P. (2002). Effective reinforcement learning for mobile robots,
International Conference on Robotics and Automation, Vol. 4, IEEE, pp. 3404–3410.

Sprague, N. & Ballard, D. H. (2003). Multiple-goal reinforcement learning with modular
Sarsa(0), International Joint Conference on Artificial Intelligence, pp. 1445–1447.

Sutton, R. S. & Barto, A. G. (1998). Reinforcement Learning: An Introduction, MIT Press.
Tan, M. (1993). Multi-agent reinforcement learning: Independent versus cooperative agents,

International Conference on Machine Learning, pp. 330–337.
Tunstel, E. (1999). Fuzzy-behavior modulation with threshold activation for autonomous ve-

hicle navigation, 18th International Conference of the North American Fuzzy Information
Procesing Society (NAFIPS), New York, NY, pp. 776–780.

Tunstel, E. (2001). Fuzzy-behavior synthesis, coordination, and evolution in an adaptive be-
havior hierarchy, Fuzzy Logic Techniques for Autonomous Vehicle Navigation, Vol. 61 of
Studies in Fuzziness and Soft Computing, Springer-Phisica Verlag, chapter 9, pp. 205–
234.

Watkins, C. J. & Dayan, P. (1992). Q-learning, Machine Learning 8(3-4): 279–292.
Whitehead, S. D. (1992). Reinforcement Learning for the Adaptive Control of Perception and Action,

PhD thesis, University of Rochester.
Yang, J. & Honavar, V. (1998). Feature subset selection using a genetic algorithm, IEEE Intelli-

gent Systems and Their Applications 13(2): 44–49.

Autonomous	Agents26

Graph	Laplacian	Based	Transfer	Learning	Methods	in	Reinforcement	Learning 27

Graph	 Laplacian	 Based	 Transfer	 Learning	Methods	 in	 Reinforcement	
Learning

Yi-Ting	Tsao,	Ke-Ting	Xiao,	Von-Wun	Soo	and	Chung-Cheng	Chiu

X

Graph Laplacian Based Transfer Learning
Methods in Reinforcement Learning

Yi-Ting Tsao, Ke-Ting Xiao, Von-Wun Soo and Chung-Cheng Chiu

Department of Computer Science, National Tsing Hua University
HsinChu, Taiwan

1. Introduction

In the real world, people often reuse their knowledge in dealing with daily life problems.
They can observe facts in an environment and recall similar experience in the past to deal
with new situations. This phenomenon implies that there must be some features for people
to compare the similarity between two environments. For example, toilet papers are usually
placed nearby cashiers in different marts in Taiwan as shown in Fig. 1. In these two photos,
orange ovals represent features for cashiers and red ovals represent features for toilet papers.
The features which allow people to recognize the fact “Toilet papers are usually placed
nearby cashiers.” are the kinds of experience which could be reused.

Fig. 1. Two different marts in Taiwan

One of disadvantages in reinforcement learning (Kimberly & Mahadevan) (Sutton & Barto,
1998) is that two different tasks with different initial states and goal states must be learned
to acquire good policies separately. It would waste time to simply learn twice in two
different tasks if they share some similar subtasks. Transfer learning is an approach to
improve the performance of cross tasks by avoiding redundancy. Some previous work show
that transferring knowledge between two tasks could speed up learning (Matthew E. Taylor,
Stone, & Liu, 2005). In reinforcement learning, the value function provides a guideline for

2

Autonomous	Agents28

action selection in a given state. In other words, the value function could be converted to the
corresponding policy, which guides action selection. Therefore, transferring the value
function is an intuitive approach in reinforcement learning.
The aim of transfer learning is to reuse learned knowledge from a source task to accelerate
learning in a related target task. Many transfer methods which are based on different
features, such as the value function or the policy, have been proposed (Hessling & Goel,
2005; Liu & Stone, 2006; Matthew E. Taylor & Stone, 2007; Mattew E. Taylor, Whiteson, &
Stone, 2007). Some researchers propose a rule transfer method which is based on case-based
reasoning. They acquire some rules by approximating the policy in a source task and then
translate them into corresponding rules, which could be used as the policy for a target task
(Hessling & Goel, 2005). In more details, they train a decision tree as rules with respect to
the value function in a source task and then reuse the decision tree in the target task. In
order to transfer, they assume that two tasks have similar descriptions. In addition, some
researchers represent the policy as a neural network in a source task and transfer it to a
target task (Mattew E. Taylor et al., 2007). However, it requires some hand-coded translation
functions. Some researchers represent states and actions as qualitative dynamic Bayes
networks (QDBNs) and find their mapping between a source task and a target task (Liu &
Stone, 2006). However, finding the mapping needs a lot of efforts. The major problem of the
above methods is the use of translation functions that are problem dependent and thus
difficult to be defined, even by an expert.
A novel transfer method which is based on proto-value functions has been proposed
(Kimberly & Mahadevan, 2006; Mahadevan, 2005; Mahadevan & Maggioni, 2006, 2007).
Proto-value functions, which are derived from spectral graph theory, harmonic analysis,
and Riemannian manifold, could be used to represent a set of basis functions to
approximate a function. This method reuses proto-value functions from a source task and
just learns their weights in composing the value function for a target task. Therefore, an
advantage of this method is that it transfers from a source task to a target task without any
translation function. However, it needs some exploring trials in a target task to acquire
accurate weights for proto-value functions.
Reusing learned knowledge could save some time by avoiding redundant learning. Transfer
learning is an approach to achieve it. In this chapter, we propose transfer methods to obtain
a better prior policy from a source task to reduce learning time in a target task without
hand-coded translation functions by graph Laplacian. Graph Laplacian, which is
constructed by the topology of the state space, are problem independent, so it is helpful for
transfer. In the following sections, we will introduce our transfer methods step-by-step. In
section 2, we introduce some background knowledge such as Markov decision process
(MDP), reinforcement learning, graph Laplacian, and etc. In section 3, we illustrate our
transfer methods in detail. In section 4, we show experimental results on our transfer
methods. In section 5, we conclude and discuss future work.

2. Background

2.1 Markov Decision Process
Markov decision process (Puterman, 2005) is a specification of a sequential decision problem
with a Markovian transition model and additive rewards. Markov decision process is
defined by 4-tuple),,,(''

a
ss

a
ss RPAS , where S denotes a finite set of states, A denotes a finite

set of actions, a
ssP ' denotes the transition probability of taking action a from state s to state

's , and a
ssR ' denotes the reward for transiting from state s to state 's with action a . A

function which determines an agent’s action in any state on Markov decision process is
called a policy . In other words, a policy is a mapping from a state to a unique action. A
value function V maps each state to its expected reward with respect to a policy as
shown in (1), where denotes a discount factor and),(as denotes the corresponding
probability of taking action a in state s . The equation (1) is also called Bellman equation.

))'((),()(
'

'' sVRPassV
s

a
ss

a
ss

a
 (1)

An optimal policy * maps each state to a specific action to maximize the expected total
discounted reward and an optimal value function *

V corresponds to the optimal policy *
as shown in (2).

))'((max)(
'

''* sVRPsV
s

a
ss

a
ssa

 (2)

The value function could be represented in tabular form with one output for each input
tuple. However, some state space in the real world is too huge to memorize the tabular form
of the value function. Approximating the value function in terms of a linear combination of
a set of basis functions as shown in (3) is an apporach to deal with this problem. For each i ,

iv denotes a basis function and iw denotes a corresponding weight.

nnvwvwV ...11 (3)

Represneting a function by a linear combination of basis functions could save a lot of
memory. However, different sets of basis functions might affect the performance of
functional approximation and the preformance directly impacts an agent’s behavior. In
other words, a suitable set of basis functions plays an important role for an agent’s behavior
on Markov decision process.

2.2 Reinforcement Learning
Reinforcement learning (Sutton & Barto, 1998) is about learning from interaction to achieve
the goal. A reinforcement learning problem is based on Markov decision process. In other
words, a reinforcement learning problem which satisfies the Markov property1 is called
Markov decision process. Some reinforcement learning problems do not satisfy the Markov
property in the real world, but they still could be approximated by the Markov assumption.
Most reinforcement learning methods are based on estimating the value function 2 by

1 Roughly speaking, if deciding a next state only requires using current information, it
satisfies the Markov property.
2 The value function includes two types: the state-value function and the action-value
function. In this paper, we focus on the state-value function.

Graph	Laplacian	Based	Transfer	Learning	Methods	in	Reinforcement	Learning 29

action selection in a given state. In other words, the value function could be converted to the
corresponding policy, which guides action selection. Therefore, transferring the value
function is an intuitive approach in reinforcement learning.
The aim of transfer learning is to reuse learned knowledge from a source task to accelerate
learning in a related target task. Many transfer methods which are based on different
features, such as the value function or the policy, have been proposed (Hessling & Goel,
2005; Liu & Stone, 2006; Matthew E. Taylor & Stone, 2007; Mattew E. Taylor, Whiteson, &
Stone, 2007). Some researchers propose a rule transfer method which is based on case-based
reasoning. They acquire some rules by approximating the policy in a source task and then
translate them into corresponding rules, which could be used as the policy for a target task
(Hessling & Goel, 2005). In more details, they train a decision tree as rules with respect to
the value function in a source task and then reuse the decision tree in the target task. In
order to transfer, they assume that two tasks have similar descriptions. In addition, some
researchers represent the policy as a neural network in a source task and transfer it to a
target task (Mattew E. Taylor et al., 2007). However, it requires some hand-coded translation
functions. Some researchers represent states and actions as qualitative dynamic Bayes
networks (QDBNs) and find their mapping between a source task and a target task (Liu &
Stone, 2006). However, finding the mapping needs a lot of efforts. The major problem of the
above methods is the use of translation functions that are problem dependent and thus
difficult to be defined, even by an expert.
A novel transfer method which is based on proto-value functions has been proposed
(Kimberly & Mahadevan, 2006; Mahadevan, 2005; Mahadevan & Maggioni, 2006, 2007).
Proto-value functions, which are derived from spectral graph theory, harmonic analysis,
and Riemannian manifold, could be used to represent a set of basis functions to
approximate a function. This method reuses proto-value functions from a source task and
just learns their weights in composing the value function for a target task. Therefore, an
advantage of this method is that it transfers from a source task to a target task without any
translation function. However, it needs some exploring trials in a target task to acquire
accurate weights for proto-value functions.
Reusing learned knowledge could save some time by avoiding redundant learning. Transfer
learning is an approach to achieve it. In this chapter, we propose transfer methods to obtain
a better prior policy from a source task to reduce learning time in a target task without
hand-coded translation functions by graph Laplacian. Graph Laplacian, which is
constructed by the topology of the state space, are problem independent, so it is helpful for
transfer. In the following sections, we will introduce our transfer methods step-by-step. In
section 2, we introduce some background knowledge such as Markov decision process
(MDP), reinforcement learning, graph Laplacian, and etc. In section 3, we illustrate our
transfer methods in detail. In section 4, we show experimental results on our transfer
methods. In section 5, we conclude and discuss future work.

2. Background

2.1 Markov Decision Process
Markov decision process (Puterman, 2005) is a specification of a sequential decision problem
with a Markovian transition model and additive rewards. Markov decision process is
defined by 4-tuple),,,(''

a
ss

a
ss RPAS , where S denotes a finite set of states, A denotes a finite

set of actions, a
ssP ' denotes the transition probability of taking action a from state s to state

's , and a
ssR ' denotes the reward for transiting from state s to state 's with action a . A

function which determines an agent’s action in any state on Markov decision process is
called a policy . In other words, a policy is a mapping from a state to a unique action. A
value function V maps each state to its expected reward with respect to a policy as
shown in (1), where denotes a discount factor and),(as denotes the corresponding
probability of taking action a in state s . The equation (1) is also called Bellman equation.

))'((),()(
'

'' sVRPassV
s

a
ss

a
ss

a
 (1)

An optimal policy * maps each state to a specific action to maximize the expected total
discounted reward and an optimal value function *

V corresponds to the optimal policy *
as shown in (2).

))'((max)(
'

''* sVRPsV
s

a
ss

a
ssa

 (2)

The value function could be represented in tabular form with one output for each input
tuple. However, some state space in the real world is too huge to memorize the tabular form
of the value function. Approximating the value function in terms of a linear combination of
a set of basis functions as shown in (3) is an apporach to deal with this problem. For each i ,

iv denotes a basis function and iw denotes a corresponding weight.

nnvwvwV ...11 (3)

Represneting a function by a linear combination of basis functions could save a lot of
memory. However, different sets of basis functions might affect the performance of
functional approximation and the preformance directly impacts an agent’s behavior. In
other words, a suitable set of basis functions plays an important role for an agent’s behavior
on Markov decision process.

2.2 Reinforcement Learning
Reinforcement learning (Sutton & Barto, 1998) is about learning from interaction to achieve
the goal. A reinforcement learning problem is based on Markov decision process. In other
words, a reinforcement learning problem which satisfies the Markov property1 is called
Markov decision process. Some reinforcement learning problems do not satisfy the Markov
property in the real world, but they still could be approximated by the Markov assumption.
Most reinforcement learning methods are based on estimating the value function 2 by

1 Roughly speaking, if deciding a next state only requires using current information, it
satisfies the Markov property.
2 The value function includes two types: the state-value function and the action-value
function. In this paper, we focus on the state-value function.

Autonomous	Agents30

approximately solving the Bellman equation. Some other learning methods are also based
on estimating the value function. A major difference is that the reinforcement learning
methods put more efforts into learning to make good decisions for frequently encountered
states and less efforts for infrequently encountered states.
Temporal-difference (TD) learning, which combines the Monte Carlo method and dynamic
programming, is a central concept in reinforcement learning. Temporal-difference learning
estimates the value function of one state from the next state without waiting for an actual
final outcome as shown in (4), where V denotes the value function, s denotes the current
state, 's denotes the next state, a

ssR ' denotes the reward for transiting from state s to state 's
with action a , denotes the learning rate, and denotes the discount factor.

)]()'([)()(' sVsVRsVsV a
ss (4)

The value function guides an agent’s behavior on Markov decision process and
reinforcement learning learns the value function by continuously updating. Therefore, the
updating method plays an important role in an agent’s performance.

2.3 Graph Laplacian
The Fourier analysis is to decompose a function in terms of a sum of trigonometric functions
with different frequencies. In other words, the trigonometric functions could be combined
together to represent the function. In addition, each frequency of trigonometric functions is
inversely proportional to its importance as representing more features of the function. If two
functions are similar, their trigonometric functions tend to be the same at low frequencies
and the difference at high frequencies.
Graph Laplacian can be defined as the combinatorial Laplacian or the normalized Laplacian
(Chung, 1997). The combinatorial Laplacian of an undirected unweighted graph G is
defined as an operator ADL , where A is the adjacency matrix and D is a diagonal
matrix whose entries are the row sums of A . In other words, the combinatorial Laplacian
could represent the connection (undirected) or the transition (directed) between two vertices
u and v as shown in (5), where vd denotes the degree of vertex v without the self loop. In
problem solving, states are represented as vertices and connections or transitions between
states are represented as edges.

 otherwise
adjacent are and if

 f

0
1),(vu

vuid
vuL

v

 (5)

Let f denote a function mapping each vertex u in a graph into a real number. The
combinatorial Laplacian L acts on a function f as shown in (6), where vu ~ denotes

vertex u and vertex v are adjacent. To minimize the equation
2

~

))()((
vu

vfuf 3 subject to

f with condition, which f is a unit vector, is equivalent to solving the eigenproblem of L
as shown in (7), where denotes the eigenvalue and f denotes the eigenfunction. By the
spectral theorem (Chung, 1997), eigenfunctions with respect to smaller eigenvalues are
smoother. In other words, the smoothness of eigenfunctions is inversely proportional to
their eigenvalues.

vu

vfufuLf
~

))()(()((6)

fLf (7)

Furthermore, the normalized Laplacian L~ of a graph is defined as 2/12/1~ LDDL and each
eigenfunction of L~ is defined as fDg 2/1 , where f denotes each eigenfunction of L . The
difference between the combinatorial Laplacian L and the normalized Laplacian L~ is that
the normalized Laplacian models the degree of a vertex as a local measure.
The spectral analysis of graph Laplacian operator provides an orthonormal set of basis
functions that can approximate any square-integrable functions on a graph (Chung, 1997).
These basis functions, which are a set of eigenfunctions of L or L~ , are called as proto-value
functions (Kimberly & Mahadevan, 2006; Mahadevan, 2005; Mahadevan & Maggioni, 2006,
2007). Proto-value functions construct a global smooth approximation of a function on a
graph. In other words, a function on a graph could be decomposed into a linear combination
of proto-value functions.
Therefore, the notion of the spectral analysis on graph Laplacian is similar to the Fourier
analysis. Basis functions of graph Laplacian corresponding to the smaller eigenvalues
represent more features and are more important. It also implies that if two graphs are
similar, their features tend to be the same at low-order basis functions and the difference at
high-order basis functions.

2.4 Transfer Types
In previous work (Kimberly & Mahadevan, 2006), the authors have proposed three transfer
types: task transfer, topological domain transfer, and scaling domain transfer as shown in
Fig. 2. The task transfer problem means that the size of states and the transition model does
not change but the rewards change. For example, tranferring from Fig. 2(a) to Fig. 2(b) is a
task transfer problem and vice versa. The domain transfer problem means that the size of
states or the transition model changes but the rewards are still the same. In detail, the
scaling domain transfer problem is the change of the size of states and the topological
domain transfer problem is the change of a transition model. For example, tranferring from

3 Minimizing the equation

vu

vfuf
~

))()((has the same result as minimizing the equation

2

~

))()((
vu

vfuf .

Graph	Laplacian	Based	Transfer	Learning	Methods	in	Reinforcement	Learning 31

approximately solving the Bellman equation. Some other learning methods are also based
on estimating the value function. A major difference is that the reinforcement learning
methods put more efforts into learning to make good decisions for frequently encountered
states and less efforts for infrequently encountered states.
Temporal-difference (TD) learning, which combines the Monte Carlo method and dynamic
programming, is a central concept in reinforcement learning. Temporal-difference learning
estimates the value function of one state from the next state without waiting for an actual
final outcome as shown in (4), where V denotes the value function, s denotes the current
state, 's denotes the next state, a

ssR ' denotes the reward for transiting from state s to state 's
with action a , denotes the learning rate, and denotes the discount factor.

)]()'([)()(' sVsVRsVsV a
ss (4)

The value function guides an agent’s behavior on Markov decision process and
reinforcement learning learns the value function by continuously updating. Therefore, the
updating method plays an important role in an agent’s performance.

2.3 Graph Laplacian
The Fourier analysis is to decompose a function in terms of a sum of trigonometric functions
with different frequencies. In other words, the trigonometric functions could be combined
together to represent the function. In addition, each frequency of trigonometric functions is
inversely proportional to its importance as representing more features of the function. If two
functions are similar, their trigonometric functions tend to be the same at low frequencies
and the difference at high frequencies.
Graph Laplacian can be defined as the combinatorial Laplacian or the normalized Laplacian
(Chung, 1997). The combinatorial Laplacian of an undirected unweighted graph G is
defined as an operator ADL , where A is the adjacency matrix and D is a diagonal
matrix whose entries are the row sums of A . In other words, the combinatorial Laplacian
could represent the connection (undirected) or the transition (directed) between two vertices
u and v as shown in (5), where vd denotes the degree of vertex v without the self loop. In
problem solving, states are represented as vertices and connections or transitions between
states are represented as edges.

 otherwise
adjacent are and if

 f

0
1),(vu

vuid
vuL

v

 (5)

Let f denote a function mapping each vertex u in a graph into a real number. The
combinatorial Laplacian L acts on a function f as shown in (6), where vu ~ denotes

vertex u and vertex v are adjacent. To minimize the equation
2

~

))()((
vu

vfuf 3 subject to

f with condition, which f is a unit vector, is equivalent to solving the eigenproblem of L
as shown in (7), where denotes the eigenvalue and f denotes the eigenfunction. By the
spectral theorem (Chung, 1997), eigenfunctions with respect to smaller eigenvalues are
smoother. In other words, the smoothness of eigenfunctions is inversely proportional to
their eigenvalues.

vu

vfufuLf
~

))()(()((6)

fLf (7)

Furthermore, the normalized Laplacian L~ of a graph is defined as 2/12/1~ LDDL and each
eigenfunction of L~ is defined as fDg 2/1 , where f denotes each eigenfunction of L . The
difference between the combinatorial Laplacian L and the normalized Laplacian L~ is that
the normalized Laplacian models the degree of a vertex as a local measure.
The spectral analysis of graph Laplacian operator provides an orthonormal set of basis
functions that can approximate any square-integrable functions on a graph (Chung, 1997).
These basis functions, which are a set of eigenfunctions of L or L~ , are called as proto-value
functions (Kimberly & Mahadevan, 2006; Mahadevan, 2005; Mahadevan & Maggioni, 2006,
2007). Proto-value functions construct a global smooth approximation of a function on a
graph. In other words, a function on a graph could be decomposed into a linear combination
of proto-value functions.
Therefore, the notion of the spectral analysis on graph Laplacian is similar to the Fourier
analysis. Basis functions of graph Laplacian corresponding to the smaller eigenvalues
represent more features and are more important. It also implies that if two graphs are
similar, their features tend to be the same at low-order basis functions and the difference at
high-order basis functions.

2.4 Transfer Types
In previous work (Kimberly & Mahadevan, 2006), the authors have proposed three transfer
types: task transfer, topological domain transfer, and scaling domain transfer as shown in
Fig. 2. The task transfer problem means that the size of states and the transition model does
not change but the rewards change. For example, tranferring from Fig. 2(a) to Fig. 2(b) is a
task transfer problem and vice versa. The domain transfer problem means that the size of
states or the transition model changes but the rewards are still the same. In detail, the
scaling domain transfer problem is the change of the size of states and the topological
domain transfer problem is the change of a transition model. For example, tranferring from

3 Minimizing the equation

vu

vfuf
~

))()((has the same result as minimizing the equation

2

~

))()((
vu

vfuf .

Autonomous	Agents32

Fig. 2(a) to Fig. 2(c) is a topological domain transfer problem and from Fig. 2(a) to Fig. 2(d) is
a scaling domain transfer problem. These three transfer types are symmetric which means
that if transferring from graph SG to graph TG is one of transfer types, transferring from
graph TG to graph SG is the same transfer type. Notice that R denotes a reward in a state,
but rewards could be gained after any state transition in general case.

RR

RR

 (a) source (b) the task transfer

RR

RR

 (c) the topological domain transfer (d) the scaling domain transfer
Fig. 2. Examples of transfer types

3. Methodology

3.1 An Example
Before we describe how to transfer, we show a simple example for the combinatorial
Laplacian and a simple scenario for the transfer problem. A 3x3 grid world and its
corresponding state transitioin graph are shown in Fig. 3(a) and Fig. 3(c). A state is defined

as an agent at one of cells in the grid world and the state transition graph shows the possible
transitions from one state to another. By definitioin in section 2.2, we could derive the
combinatorial Laplacian as shown in Fig. 3(b). The diagonal terms denote the degree of
states and the others denote the connection. Notice that the combinatorial Laplacian does
not only describe the grid world problems, but also others. For example, the task of putting
on a pair of shoes (Russell & Norvig, 2003) is defined as an agent who wants to put on shoes
with a condition of putting on socks before shoes. The state transition graph of this problem
is shown in Fig. 3(d). By camparing Fig. 3(c) and Fig. 3(d), we could find that the two graphs
are the same. It means that their combinatorial Laplacians are also the same. Therefore, we
could do the domain transfer between these two tasks.

 (a) 3x3 grid world (b) the combinatorial Laplacian

 (c) the state transition graph of (a) (d) the state transition graph of the problem

 of putting on a pair of shoes
Fig. 3. A simple example

3.2 A Simple Transfer Method
In this section, we describe a simple transfer method which is based on transferring the
value function. We represent the value function by a linear combination of basis functions
and the idea is transferring the weights between two similar tasks whose details are
described in Fig. 4. The first step is to collect the knowledge of state transitions in both tasks.

210100000
131010000
012001000
100310100
010141010
001013001
000100210
000010131
000001012

Graph	Laplacian	Based	Transfer	Learning	Methods	in	Reinforcement	Learning 33

Fig. 2(a) to Fig. 2(c) is a topological domain transfer problem and from Fig. 2(a) to Fig. 2(d) is
a scaling domain transfer problem. These three transfer types are symmetric which means
that if transferring from graph SG to graph TG is one of transfer types, transferring from
graph TG to graph SG is the same transfer type. Notice that R denotes a reward in a state,
but rewards could be gained after any state transition in general case.

RR

RR

 (a) source (b) the task transfer

RR

RR

 (c) the topological domain transfer (d) the scaling domain transfer
Fig. 2. Examples of transfer types

3. Methodology

3.1 An Example
Before we describe how to transfer, we show a simple example for the combinatorial
Laplacian and a simple scenario for the transfer problem. A 3x3 grid world and its
corresponding state transitioin graph are shown in Fig. 3(a) and Fig. 3(c). A state is defined

as an agent at one of cells in the grid world and the state transition graph shows the possible
transitions from one state to another. By definitioin in section 2.2, we could derive the
combinatorial Laplacian as shown in Fig. 3(b). The diagonal terms denote the degree of
states and the others denote the connection. Notice that the combinatorial Laplacian does
not only describe the grid world problems, but also others. For example, the task of putting
on a pair of shoes (Russell & Norvig, 2003) is defined as an agent who wants to put on shoes
with a condition of putting on socks before shoes. The state transition graph of this problem
is shown in Fig. 3(d). By camparing Fig. 3(c) and Fig. 3(d), we could find that the two graphs
are the same. It means that their combinatorial Laplacians are also the same. Therefore, we
could do the domain transfer between these two tasks.

 (a) 3x3 grid world (b) the combinatorial Laplacian

 (c) the state transition graph of (a) (d) the state transition graph of the problem

 of putting on a pair of shoes
Fig. 3. A simple example

3.2 A Simple Transfer Method
In this section, we describe a simple transfer method which is based on transferring the
value function. We represent the value function by a linear combination of basis functions
and the idea is transferring the weights between two similar tasks whose details are
described in Fig. 4. The first step is to collect the knowledge of state transitions in both tasks.

210100000
131010000
012001000
100310100
010141010
001013001
000100210
000010131
000001012

Autonomous	Agents34

The second step is to construct the normalized Laplacian by the collected state transitions.
The third step is to compute the corresponding basis functions of the normalized Laplacians.
The fourth step is to obtain the weights of the source basis functions by approximating the
source value function. The fifth step is to approximate the target value function in terms of
the target basis functions and the obtained weights. The last step is to acquire the target
policy through the approximated target value function.

1. Perform N -steps random walk to obtain M trials on a source task and a target task

respectively.
2. Construct the normalized Laplacians SL~ , by the undirected graphs SG , TG which are

obtained by the trials.
3. Solve the eigenproblems of SL~ , TL~ to obtain the basis functions }{ S

iv , }{ T
iv which are

ordered by the ascending eigenvalues.
4. Approximate the source value function SV *

 to obtain the weights }{ S
iw corresponding

to }{ S
iv by the least-square error fit method.

5. Transfer the weight }{ S
iw from }{ S

iv to the corresponding target basis functions }{ T
iv .

i

T
ii

T vwV '

6. Convert the approximation target value function TV ' to the target policy ' .

Fig. 4. A simple transfer method

The reason why the simple transfer method works is that basis functions of both tasks with
the same order play the same important role for both value functions. Therefore, we transfer
the obtained weights from a source task to a target task. If two tasks are similar, two sets of
basis functions tend to be similar. Notice that it does not imply that numeric values are
similar but the structure is similar as shown in Fig. 5. On the one hand, a small difference
between two tasks cannot affect the global smooth structure so the both low-order basis
functions tend to be the same. On the other hand, the high-order basis functions are affected
by a small change so the target policy could obtain from the similar low-order basis
functions and the different high-order basis functions. For example, the basis functions in
Fig. 5 are the lower-order ones and the basis functions in Fig. 6 are the high-order ones.

0
2

4
6

8

0

2

4

6

8
-0.2

-0.1

0

0.1

0.2

0
2

4
6

8
10

0

5

10
-0.2

-0.1

0

0.1

0.2

Fig. 5. The similar structure of the basis functions of Fig. 2(a) and Fig. 2(d)

0
2

4
6

8

0

2

4

6

8
-0.2

-0.1

0

0.1

0.2

0
2

4
6

8
10

0

5

10
-0.2

-0.1

0

0.1

0.2

Fig. 6. The different structures of the basis functions of Fig. 2(a) and Fig. 2(d)

3.3 Modified Graph Laplacian
In section 2.3, we introduce the graph Laplacian and the smoothness property of its
corresponding eigenfunction. In this section, we assume that each state transition is
bidirectional and a positive circular reward does not exist for every task, which means that
both edges, vu ~ and uv ~ , have positive rewards. Then, the modified graph Laplacian 'L of
a directed graph is defined in (8), where vS denotes the entry sum of the v -th row. Roughly
speaking, the modified graph Laplacian treats the state with a positive reward as a termination.

 otherwise
reward positive a without and
 if

0
1),(' v~uu~v

vuS
vuL

v

 (8)

Let f denote a function mapping each vertex u in a graph into a real number and the
modified graph Laplacian 'L acts on f as shown in (9), where vu denotes vu ~ and

uv ~ without a positive reward. To minimize the equation (9) subject to f with the
condition which f is a unit vector is equivalent to solving the eigenproblem of 'L . It is
similar to the graph Laplacian case.

vu

vfufufL))()(()(' (9)

Because the graph Laplacian L is a positive semidefinite matrix, the eigenvalues of L are
non-negative real numbers. To analyze the eigenvalues of the modified graph Laplacian 'L
we observe the characteristic equation of the modified graph Laplacian 'L as shown in (10),
where L̂ denotes the combinatorial Laplacian L without i -th row and column, which

),(' iiL is equivalent to zero. By the definition, L̂ is a possible graph Laplacian. Therfore, L̂
is a positive semidefinite matrix and its eigenvalues are non-negtaive numbers. Furthermore,
we could derive that the eigenvalues of 'L are still non-negative and the normalized version

2/12/1 ''''~ DLDL , where 'D denotes a matrix with diagonal terms of 'L .

)ˆdet()()'det(ILIL k (10)

Graph	Laplacian	Based	Transfer	Learning	Methods	in	Reinforcement	Learning 35

The second step is to construct the normalized Laplacian by the collected state transitions.
The third step is to compute the corresponding basis functions of the normalized Laplacians.
The fourth step is to obtain the weights of the source basis functions by approximating the
source value function. The fifth step is to approximate the target value function in terms of
the target basis functions and the obtained weights. The last step is to acquire the target
policy through the approximated target value function.

1. Perform N -steps random walk to obtain M trials on a source task and a target task

respectively.
2. Construct the normalized Laplacians SL~ , by the undirected graphs SG , TG which are

obtained by the trials.
3. Solve the eigenproblems of SL~ , TL~ to obtain the basis functions }{ S

iv , }{ T
iv which are

ordered by the ascending eigenvalues.
4. Approximate the source value function SV *

 to obtain the weights }{ S
iw corresponding

to }{ S
iv by the least-square error fit method.

5. Transfer the weight }{ S
iw from }{ S

iv to the corresponding target basis functions }{ T
iv .

i

T
ii

T vwV '

6. Convert the approximation target value function TV ' to the target policy ' .

Fig. 4. A simple transfer method

The reason why the simple transfer method works is that basis functions of both tasks with
the same order play the same important role for both value functions. Therefore, we transfer
the obtained weights from a source task to a target task. If two tasks are similar, two sets of
basis functions tend to be similar. Notice that it does not imply that numeric values are
similar but the structure is similar as shown in Fig. 5. On the one hand, a small difference
between two tasks cannot affect the global smooth structure so the both low-order basis
functions tend to be the same. On the other hand, the high-order basis functions are affected
by a small change so the target policy could obtain from the similar low-order basis
functions and the different high-order basis functions. For example, the basis functions in
Fig. 5 are the lower-order ones and the basis functions in Fig. 6 are the high-order ones.

0
2

4
6

8

0

2

4

6

8
-0.2

-0.1

0

0.1

0.2

0
2

4
6

8
10

0

5

10
-0.2

-0.1

0

0.1

0.2

Fig. 5. The similar structure of the basis functions of Fig. 2(a) and Fig. 2(d)

0
2

4
6

8

0

2

4

6

8
-0.2

-0.1

0

0.1

0.2

0
2

4
6

8
10

0

5

10
-0.2

-0.1

0

0.1

0.2

Fig. 6. The different structures of the basis functions of Fig. 2(a) and Fig. 2(d)

3.3 Modified Graph Laplacian
In section 2.3, we introduce the graph Laplacian and the smoothness property of its
corresponding eigenfunction. In this section, we assume that each state transition is
bidirectional and a positive circular reward does not exist for every task, which means that
both edges, vu ~ and uv ~ , have positive rewards. Then, the modified graph Laplacian 'L of
a directed graph is defined in (8), where vS denotes the entry sum of the v -th row. Roughly
speaking, the modified graph Laplacian treats the state with a positive reward as a termination.

 otherwise
reward positive a without and
 if

0
1),(' v~uu~v

vuS
vuL

v

 (8)

Let f denote a function mapping each vertex u in a graph into a real number and the
modified graph Laplacian 'L acts on f as shown in (9), where vu denotes vu ~ and

uv ~ without a positive reward. To minimize the equation (9) subject to f with the
condition which f is a unit vector is equivalent to solving the eigenproblem of 'L . It is
similar to the graph Laplacian case.

vu

vfufufL))()(()(' (9)

Because the graph Laplacian L is a positive semidefinite matrix, the eigenvalues of L are
non-negative real numbers. To analyze the eigenvalues of the modified graph Laplacian 'L
we observe the characteristic equation of the modified graph Laplacian 'L as shown in (10),
where L̂ denotes the combinatorial Laplacian L without i -th row and column, which

),(' iiL is equivalent to zero. By the definition, L̂ is a possible graph Laplacian. Therfore, L̂
is a positive semidefinite matrix and its eigenvalues are non-negtaive numbers. Furthermore,
we could derive that the eigenvalues of 'L are still non-negative and the normalized version

2/12/1 ''''~ DLDL , where 'D denotes a matrix with diagonal terms of 'L .

)ˆdet()()'det(ILIL k (10)

Autonomous	Agents36

The eigenfunctions with respect to different eigenvalues represent different levels of
smoothness. Therefore, the eigenfunction with respect to the first nonzero eigenvalue on the
modified graph Laplacian is the smoothest. In most cases, the value function tends to be
smooth. By the observation, we find the eigenfunction with respect to the first nonzero
eigenvalue have the similar behavior tendency as its value function. An simple task and its
value function are shown in Fig. 7, where R denotes a reward to illustrate the tendency. In
this grid world task, an agent in each cell represents a state and its topology represents the
possible state transitions. An agent reaches the state with R to obtain a reward 1 and
terminate, otherwise a penalty 04.0 . By the definition, we construct the modified graph
Laplacian as shown in (11). Then, we compute the eigenfunction with respect to the first
nonzero eigenvalue as shown in Fig. 8. Because the eigenfunction is a vector, it have two
possible directions. For convenience, if all values are non-negative, it is called the positive
eigenfunction, otherwise the negative eigenfunction. By the definition (Sutton & Barto, 1998),
the value of a terminal state in value function is zero and the value of the state which is
adjacent to a positive reward is close to the value of the reward. Therefore, we could expect
the value function and the negative eigenfunction with respect to the first nonzero
eigenvalue to be similar and thus we could transfer the value function by the negative
eigenfunction with respect to the first nonzero eigenvalue.

RR

0
2

4
6

8

0

2

4

6

8
-0.5

0

0.5

1

1.5

x

value function

y

va
lu

e

 (a) (b)
Fig. 7. A 8x8 grid world task and its optimal value function

R

R

 with state0000
1300

0031
0012

 with state

 (11)

0
2

4
6

8

0
2

4
6

8
0

0.05

0.1

0.15

0.2

x

eigenfunction

y

va
lu
e

0
2

4
6

8

0
2

4
6

8
-0.2

-0.15

-0.1

-0.05

0

x

eigenfunction

y

va
lu
e

 (a) the positive eigenfunction (b) the negative eigenfunction
Fig. 8. The eigenfunctions of the 8x8 grid world in Fig. 7(a) with respect to the first nonzero
eigenvalue

3.4 Transfer Method
In this section, we describe a transfer method which is based on the tendency of the
eigenfunction with respect to the first nonzero eigenvalue of the modified graph Laplacian.
The detail of the transfer method is shown in Fig. 9. The first step is to collect the knowledge
of state transitions in both tasks. The second step is to construct the normalized modified
Laplacian by the collected state transitions. The third step is to compute the corresponding
negative eigenfunctions with respect to the first nonzero eigenvalue of the normalized
modified Laplacians. The fourth step is to sort the eigenfunctions in descending order
respectively to obtain the one-to-one state mappings which map states in the source task to
the corresponding ones in the target task. The fifth step is to map the values of states in the
source task to the corresponding ones in the target task. The last step applies only for the
case with different state sizes. If the number of states in the target task is bigger than in the
source task, some states do not obtain the mapping states in the step 4. Therefore, the
extrapolated method is used to estimate their value in terms of the negative eigenfunction in
the target task and the value function in the source task. If the number of states in the target
task is smaller than in the source task, all states in the target task can find the mapping states
in the source task and some states in the source task are useless.

1. Perform N -steps random walk to obtain M trials on a source task and a target task

respectively.
2. Construct the normalized modified Laplacians SL '~ , TL '~ by the directed graphs SG ,

TG , which are obtained by the trials.
3. Solve the eigenproblems of SL~ , TL~ to obtain the negative eigenfunctions with respect

the first nonzero eigenvalue Sv1 , Tv1 .
4. Sort the negative eigenfunctions Sv1 , Tv1 in descending order respectively to obtain the

one-to-one state mappings.
5. Map the values of the source value function to the values of the corresponding states

in the target task.
6. (optional) If the number of states in the target task is bigger than that in the source

task, an extrapolated method is used to estimate the rest of states.
Fig. 9. The transfer method

Graph	Laplacian	Based	Transfer	Learning	Methods	in	Reinforcement	Learning 37

The eigenfunctions with respect to different eigenvalues represent different levels of
smoothness. Therefore, the eigenfunction with respect to the first nonzero eigenvalue on the
modified graph Laplacian is the smoothest. In most cases, the value function tends to be
smooth. By the observation, we find the eigenfunction with respect to the first nonzero
eigenvalue have the similar behavior tendency as its value function. An simple task and its
value function are shown in Fig. 7, where R denotes a reward to illustrate the tendency. In
this grid world task, an agent in each cell represents a state and its topology represents the
possible state transitions. An agent reaches the state with R to obtain a reward 1 and
terminate, otherwise a penalty 04.0 . By the definition, we construct the modified graph
Laplacian as shown in (11). Then, we compute the eigenfunction with respect to the first
nonzero eigenvalue as shown in Fig. 8. Because the eigenfunction is a vector, it have two
possible directions. For convenience, if all values are non-negative, it is called the positive
eigenfunction, otherwise the negative eigenfunction. By the definition (Sutton & Barto, 1998),
the value of a terminal state in value function is zero and the value of the state which is
adjacent to a positive reward is close to the value of the reward. Therefore, we could expect
the value function and the negative eigenfunction with respect to the first nonzero
eigenvalue to be similar and thus we could transfer the value function by the negative
eigenfunction with respect to the first nonzero eigenvalue.

RR

0
2

4
6

8

0

2

4

6

8
-0.5

0

0.5

1

1.5

x

value function

y

va
lu

e

 (a) (b)
Fig. 7. A 8x8 grid world task and its optimal value function

R

R

 with state0000
1300

0031
0012

 with state

 (11)

0
2

4
6

8

0
2

4
6

8
0

0.05

0.1

0.15

0.2

x

eigenfunction

y

va
lu
e

0
2

4
6

8

0
2

4
6

8
-0.2

-0.15

-0.1

-0.05

0

x

eigenfunction

y

va
lu
e

 (a) the positive eigenfunction (b) the negative eigenfunction
Fig. 8. The eigenfunctions of the 8x8 grid world in Fig. 7(a) with respect to the first nonzero
eigenvalue

3.4 Transfer Method
In this section, we describe a transfer method which is based on the tendency of the
eigenfunction with respect to the first nonzero eigenvalue of the modified graph Laplacian.
The detail of the transfer method is shown in Fig. 9. The first step is to collect the knowledge
of state transitions in both tasks. The second step is to construct the normalized modified
Laplacian by the collected state transitions. The third step is to compute the corresponding
negative eigenfunctions with respect to the first nonzero eigenvalue of the normalized
modified Laplacians. The fourth step is to sort the eigenfunctions in descending order
respectively to obtain the one-to-one state mappings which map states in the source task to
the corresponding ones in the target task. The fifth step is to map the values of states in the
source task to the corresponding ones in the target task. The last step applies only for the
case with different state sizes. If the number of states in the target task is bigger than in the
source task, some states do not obtain the mapping states in the step 4. Therefore, the
extrapolated method is used to estimate their value in terms of the negative eigenfunction in
the target task and the value function in the source task. If the number of states in the target
task is smaller than in the source task, all states in the target task can find the mapping states
in the source task and some states in the source task are useless.

1. Perform N -steps random walk to obtain M trials on a source task and a target task

respectively.
2. Construct the normalized modified Laplacians SL '~ , TL '~ by the directed graphs SG ,

TG , which are obtained by the trials.
3. Solve the eigenproblems of SL~ , TL~ to obtain the negative eigenfunctions with respect

the first nonzero eigenvalue Sv1 , Tv1 .
4. Sort the negative eigenfunctions Sv1 , Tv1 in descending order respectively to obtain the

one-to-one state mappings.
5. Map the values of the source value function to the values of the corresponding states

in the target task.
6. (optional) If the number of states in the target task is bigger than that in the source

task, an extrapolated method is used to estimate the rest of states.
Fig. 9. The transfer method

Autonomous	Agents38

4. Experiments

4.1 Setting
These experiments investigate the effects of the simpler transfer method and the transfer
methods by three transfer types. The transition model is shown in Fig. 10. It means that
when an agent takes an action in a state, the consequence is not deterministic. For example,
if an agent goes forward in a state, the possible next states can be the forward state, the left
state and the right state. Notice that the symbol R denotes a terminal state with reward 1
and any state transitions could not reach the terminal state with a penalty 04.0 . We
compare the results by an -greedy TD learning agent which means that the agent takes an
action which is not according to the policy with probability . We set 1.0 , the learning
rate 1.0 and the discount factor 9.0 .

0.8

0.1 0.1

0.8

0.1 0.1

Fig. 10. The transition model in the experiments

The goal of these experiments is to understand the performance and the accelerated effects.
To calculate the steps we assume that the upper left corner is the start state. In the domain
transfer cases, we compare the steps of reaching the reward of a random policy, the simple
transferred policy, the transferred policy and the optimal one as the performance
evaluations. In the task transfer cases, we compare the steps of reaching the reward of a
random policy and the transferred policy to evaluate the performance. In addition, to show
the accelerated effects, we compare the convergence using a random initial policy and the
transferred initial policy for all cases.

4.2 Scaling Domain Transfer
To investigate the performance of the simple transferred policy we separate the scaling
domain transfer into two cases: the up-scaling case and the down-scaling case. The topology
of the task is the same as Fig. 2(a). In the up-scaling case, we choose the 6x6 grid world as a
source task and 8x8, 10x10, 12x12, 14x14, 16x16, 18x18, and 20x20 grid world as target tasks.
In down-scaling case, we choose the 20x20 grid world as a source task and 6x6, 8x8, 10x10,
12x12, 14x14, 16x16, and 18x18 grid world as target tasks. The results are shown in Fig. 11,
where the simple transferred policy is derived from the simple transfer method and the
transferred policy is derived from the transfer method. We could discover that regardless of
the size is changed in a target task, the simple transferred policy still performs very close to
the optimal policy and the transferred policy doe not always perform well. Therefore, we
investigate the accelerated effect of the transfer method with different topologies in the up-
scaling case as shown in Fig. 2(a) and Fig. 7(a). The results are shown in Fig. 12. We could
discover that different topologies have different effects and the transfer method is not
always good for the scaling domain transfer.

0

1000

2000

3000

4000

5000

0 100 200 300 400

size of states

nu
m
be
r
of
 s
te
ps

random
simple
transferred
optimal

0

1000

2000

3000

4000

5000

050100150200250300350

size of states

nu
m
be
r
of
 s
te
ps

random
simple
transferred
optimal

 (a) the up-scaling case (b) the down-scaling case

Fig. 11. The performance of transferred policies in the scaling domain transfer

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episodes

nu
m
be
r
of
 s
te
ps

8x8 random

8x8 transferred

16x16 random

16x16 transferred

20x20 random

20x20 transferred

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episodes

nu
m
be
r
of
 s
te
ps

8x8 random

8x8 transferred

16x16 random

16x16 transferred

20x20 random

20x20 transferred

 (a) corresponding to Fig. 2(a) (b) corresponding to Fig. 7(a)

Fig. 12. The accelerated effect of the transfer method in the scaling domain transfer

4.3 Topological Domain Transfer
The source task is shown in Fig. 2(a) and the target tasks are shown in Fig. 13. Fig. 13(a)
represents that the door is separated into two doors and the distances between each door
and the center is equal to a unit. Fig. 13(b) represents that the size of the door is increased.
We investigate the topological domain transfer in different sizes as follows: 6x6, 8x8, 10x10,
12x12, 14x14, 16x16, 18x18, 20x20. The performance of the transferred policies is shown in
Fig. 14. We could discover that different transfer methods are good for different topological
domain transfer tasks. Although sometimes the transferred policy is not as good as the
optimal policy, if the convergence is good enough, it is still a pretty good transfer. That is
one of reasons why we take the accelerated effect into consideration. Another reason is that
even though a policy is acceptable so far, it is possible to have a bad performance in a bigger
task. The accelerated effect of the transfer method is shown in Fig. 15. We discover that the
convergence of the transferred policy is faster than the random policy in both cases.

Graph	Laplacian	Based	Transfer	Learning	Methods	in	Reinforcement	Learning 39

4. Experiments

4.1 Setting
These experiments investigate the effects of the simpler transfer method and the transfer
methods by three transfer types. The transition model is shown in Fig. 10. It means that
when an agent takes an action in a state, the consequence is not deterministic. For example,
if an agent goes forward in a state, the possible next states can be the forward state, the left
state and the right state. Notice that the symbol R denotes a terminal state with reward 1
and any state transitions could not reach the terminal state with a penalty 04.0 . We
compare the results by an -greedy TD learning agent which means that the agent takes an
action which is not according to the policy with probability . We set 1.0 , the learning
rate 1.0 and the discount factor 9.0 .

0.8

0.1 0.1

0.8

0.1 0.1

Fig. 10. The transition model in the experiments

The goal of these experiments is to understand the performance and the accelerated effects.
To calculate the steps we assume that the upper left corner is the start state. In the domain
transfer cases, we compare the steps of reaching the reward of a random policy, the simple
transferred policy, the transferred policy and the optimal one as the performance
evaluations. In the task transfer cases, we compare the steps of reaching the reward of a
random policy and the transferred policy to evaluate the performance. In addition, to show
the accelerated effects, we compare the convergence using a random initial policy and the
transferred initial policy for all cases.

4.2 Scaling Domain Transfer
To investigate the performance of the simple transferred policy we separate the scaling
domain transfer into two cases: the up-scaling case and the down-scaling case. The topology
of the task is the same as Fig. 2(a). In the up-scaling case, we choose the 6x6 grid world as a
source task and 8x8, 10x10, 12x12, 14x14, 16x16, 18x18, and 20x20 grid world as target tasks.
In down-scaling case, we choose the 20x20 grid world as a source task and 6x6, 8x8, 10x10,
12x12, 14x14, 16x16, and 18x18 grid world as target tasks. The results are shown in Fig. 11,
where the simple transferred policy is derived from the simple transfer method and the
transferred policy is derived from the transfer method. We could discover that regardless of
the size is changed in a target task, the simple transferred policy still performs very close to
the optimal policy and the transferred policy doe not always perform well. Therefore, we
investigate the accelerated effect of the transfer method with different topologies in the up-
scaling case as shown in Fig. 2(a) and Fig. 7(a). The results are shown in Fig. 12. We could
discover that different topologies have different effects and the transfer method is not
always good for the scaling domain transfer.

0

1000

2000

3000

4000

5000

0 100 200 300 400

size of states

nu
m
be
r
of
 s
te
ps

random
simple
transferred
optimal

0

1000

2000

3000

4000

5000

050100150200250300350

size of states

nu
m
be
r
of
 s
te
ps

random
simple
transferred
optimal

 (a) the up-scaling case (b) the down-scaling case

Fig. 11. The performance of transferred policies in the scaling domain transfer

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episodes

nu
m
be
r
of
 s
te
ps

8x8 random

8x8 transferred

16x16 random

16x16 transferred

20x20 random

20x20 transferred

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episodes

nu
m
be
r
of
 s
te
ps

8x8 random

8x8 transferred

16x16 random

16x16 transferred

20x20 random

20x20 transferred

 (a) corresponding to Fig. 2(a) (b) corresponding to Fig. 7(a)

Fig. 12. The accelerated effect of the transfer method in the scaling domain transfer

4.3 Topological Domain Transfer
The source task is shown in Fig. 2(a) and the target tasks are shown in Fig. 13. Fig. 13(a)
represents that the door is separated into two doors and the distances between each door
and the center is equal to a unit. Fig. 13(b) represents that the size of the door is increased.
We investigate the topological domain transfer in different sizes as follows: 6x6, 8x8, 10x10,
12x12, 14x14, 16x16, 18x18, 20x20. The performance of the transferred policies is shown in
Fig. 14. We could discover that different transfer methods are good for different topological
domain transfer tasks. Although sometimes the transferred policy is not as good as the
optimal policy, if the convergence is good enough, it is still a pretty good transfer. That is
one of reasons why we take the accelerated effect into consideration. Another reason is that
even though a policy is acceptable so far, it is possible to have a bad performance in a bigger
task. The accelerated effect of the transfer method is shown in Fig. 15. We discover that the
convergence of the transferred policy is faster than the random policy in both cases.

Autonomous	Agents40

RR

RR

(a) (b)
Fig. 13. The target tasks of the topological domain transfer

0

1000

2000

3000

4000

5000

0 100 200 300 400

size of states

nu
m
be
r
of
 s
te
ps

random
simple
transferred
optimal

0

1000

2000

3000

4000

5000

0 100 200 300 400

size of states

nu
m
be
r
of
 s
te
ps

random
simple
transferred
optimal

Fig. 14. The performance of transferred policies in the topological domain transfer

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episode

nu
m
be
r
of
 s
te
ps

8x8 random
8x8 transferred
16x16 random
16x16 transferred
20x20 random
20x20 transferred

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episode

nu
m
be
r
of
 s
te
ps

8x8 random
8x8 transferred
16x16 random
16x16 transferred
20x20 random
20x20 transferred

Fig. 15. The accelerated effect of the transfer method in the topological domain transfer

4.4 Task Transfer
So far, we compare only the simple transfer method and the transfer method in the domain
transfer cases. In this section, we investigate the transfer method in the task transfer. The
reason why we do not discuss the simple transfer method is that it could not use in the task
transfer because it does not take the reward into consideration. The source task and the
target tasks are shown in Fig. 16. Fig. 16(a) represents the source task and the Fig. 16(b), (c),
(d), (e) represent the target tasks with different rewards. Notice that we investigate the task
transfer in a fixed size 10x10 because we think the task transfer is independent to the size.

The performance of the transfer method is shown in Fig. 17. We could discover that the
transferred policy is much better than the random policy. The accelerated effect of the
transferred method is shown in Fig. 18. The convergence is obviously much faster than the
random policy. In other words, the transfer method could accelerate learning in the task
transfer cases.

RR

RR

(a) (b)

RR

 RR

RR

(c) (d) (e)

Fig. 16. The source and target tasks of the task transfer

0

100

200

300

400

500

(a) (b) (c) (d)

nu
m

be
r o

f s
te

ps

random
transferred

Fig. 17. The performance of the transfer method in the task transfer

Graph	Laplacian	Based	Transfer	Learning	Methods	in	Reinforcement	Learning 41

RR

RR

(a) (b)
Fig. 13. The target tasks of the topological domain transfer

0

1000

2000

3000

4000

5000

0 100 200 300 400

size of states

nu
m
be
r
of
 s
te
ps

random
simple
transferred
optimal

0

1000

2000

3000

4000

5000

0 100 200 300 400

size of states

nu
m
be
r
of
 s
te
ps

random
simple
transferred
optimal

Fig. 14. The performance of transferred policies in the topological domain transfer

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episode

nu
m
be
r
of
 s
te
ps

8x8 random
8x8 transferred
16x16 random
16x16 transferred
20x20 random
20x20 transferred

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episode

nu
m
be
r
of
 s
te
ps

8x8 random
8x8 transferred
16x16 random
16x16 transferred
20x20 random
20x20 transferred

Fig. 15. The accelerated effect of the transfer method in the topological domain transfer

4.4 Task Transfer
So far, we compare only the simple transfer method and the transfer method in the domain
transfer cases. In this section, we investigate the transfer method in the task transfer. The
reason why we do not discuss the simple transfer method is that it could not use in the task
transfer because it does not take the reward into consideration. The source task and the
target tasks are shown in Fig. 16. Fig. 16(a) represents the source task and the Fig. 16(b), (c),
(d), (e) represent the target tasks with different rewards. Notice that we investigate the task
transfer in a fixed size 10x10 because we think the task transfer is independent to the size.

The performance of the transfer method is shown in Fig. 17. We could discover that the
transferred policy is much better than the random policy. The accelerated effect of the
transferred method is shown in Fig. 18. The convergence is obviously much faster than the
random policy. In other words, the transfer method could accelerate learning in the task
transfer cases.

RR

RR

(a) (b)

RR

 RR

RR

(c) (d) (e)

Fig. 16. The source and target tasks of the task transfer

0

100

200

300

400

500

(a) (b) (c) (d)

nu
m

be
r o

f s
te

ps

random
transferred

Fig. 17. The performance of the transfer method in the task transfer

Autonomous	Agents42

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episode

nu
m
be
r
of
 s
te
ps

random (b)

transferred (b)

random (c)

transferred (c)

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episode

nu
m
be
r
of
 s
te
ps

random (d)

transferred (d)

random (e)

transferred (e)

Fig. 18. The accelerated effect of the transfer method in the task transfer

4.5 Synthetic Transfer
In this section, we synthesize the scaling domain transfer, the topological domain transfer
and the task transfer to be a synthetic transfer. The synthetic transfer is like transferring a
maze to another. The source task and the target tasks are shown in Fig. 19. Notice that these
three tasks are randomly generated with the condition that each state could reach the
terminal state. The accelerated effects of the transfer method are shown in Fig. 20. The
results show that the transfer method is not only used in one of transfer types, but also in
the synthetic case. That is the reason why we discuss the transfer method rather than the
simple transfer method.

RR

RR

RR

 (a) (b) (c)
Fig. 19. The source task (a) and the target tasks (b) and (c) of the synthetic transfer

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 201 401 601 801 1001 1201 1401 1601 1801

number of episodes

nu
m
be
r
of
 s
te
ps

random

transferred

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 201 401 601 801 1001 1201 1401 1601 1801

number of episodes

nu
m
be
r
of
 s
te
ps

random

transferred

Fig. 20. The accelerated effect of the transfer method in the synthetic transfer

5. Discussions

The theoretical analysis of the simple transfer method is based on the spectral analysis on
graph Laplacian. Low-order basis functions of graph Laplacian tend to represent more
features of the value functions and high-order basis functions tend to represent fewer
features. If low-order basis functions of two tasks are similar, the simple transfer method
performs well. In other words, similar tasks tend to keep similar structures in low-order
basis functions so transferring weights from one task to another could acquire a good
approximate policy. The experimental results show that if two tasks are similar, the
transferred policy of the simple transfer method could be very close to the optimal one.
However, even though the simple transfer method seems to be good in the domain transfer
cases, it could not be used in the task transfer. Furthermore, it still needs more theoretical
analysis as to determine if topological similarity is close enough to apply the simple transfer
method that ensures the simple transferred policy to be close to the optimal one.
The transfer method could be used in three transfer types: the scaling domain transfer, the
topological domain transfer and the task transfer. However, the transfer method is not
always better than the simple transfer method. The experimental results show that the
transferred policy of the transfer method converges earlier than the random policy. In other
words, the evidence demonstrates the accelerated effect of the transfer method. The reason
why the transfer method could work in the task transfer is taking rewards into consideration
on the modified graph Laplacian. However, how to evaluate the accelerated effect of the
transfer method in more objective manner is a challenge because different tasks tend to have
different effects.
In this chapter, we have proposed the transfer method based on the topology of state
transitions for reinforcement learning. It could be used in three transfer types: the scaling
domain transfer, the topological domain transfer and the task transfer. Because the transfer
method is transferring the state-value function, we need a perfect transition model to obtain
the policy. However, to obtain the perfect transition model sometimes is not easy so
extending this idea to the action-value function might be an approach to avoid this problem.
Because the transfer method only deals with the discrete tasks, mapping continuous tasks to
discrete tasks might be an approach to deal with the transfer in continuous tasks.

6. References

Chung, F. R. K. (1997). Spectral graph theory, American Mathematical Society.
Hessling, A. v., & Goel, A. K. (2005). Abstracting reusable cases from reinforcement

learning. Proceedings of the Sixth International Conference on Case-Based Reasoning
Workshop.

Kimberly, F., & Mahadevan, S. (2006). Proto-transfer learning in Markov decision processes
using spectral methods. Proceedings of the Twenty-Third International Conference on
Machine Learning Workshop on Structural Knowledge Transfer for Machine Learning.

Liu, Y., & Stone, P. (2006). Value-function-based transfer for reinforcement learning using
structure mapping. Proceedings of the Twenty-First National Conference on Artificial
Intelligence.

Mahadevan, S. (2005). Proto-value functions: Developmental reinforcement learning.
Proceedings of the Twenty-Second International Conference on Machine Learning.

Graph	Laplacian	Based	Transfer	Learning	Methods	in	Reinforcement	Learning 43

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episode

nu
m
be
r
of
 s
te
ps

random (b)

transferred (b)

random (c)

transferred (c)

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episode

nu
m
be
r
of
 s
te
ps

random (d)

transferred (d)

random (e)

transferred (e)

Fig. 18. The accelerated effect of the transfer method in the task transfer

4.5 Synthetic Transfer
In this section, we synthesize the scaling domain transfer, the topological domain transfer
and the task transfer to be a synthetic transfer. The synthetic transfer is like transferring a
maze to another. The source task and the target tasks are shown in Fig. 19. Notice that these
three tasks are randomly generated with the condition that each state could reach the
terminal state. The accelerated effects of the transfer method are shown in Fig. 20. The
results show that the transfer method is not only used in one of transfer types, but also in
the synthetic case. That is the reason why we discuss the transfer method rather than the
simple transfer method.

RR

RR

RR

 (a) (b) (c)
Fig. 19. The source task (a) and the target tasks (b) and (c) of the synthetic transfer

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 201 401 601 801 1001 1201 1401 1601 1801

number of episodes

nu
m
be
r
of
 s
te
ps

random

transferred

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 201 401 601 801 1001 1201 1401 1601 1801

number of episodes

nu
m
be
r
of
 s
te
ps

random

transferred

Fig. 20. The accelerated effect of the transfer method in the synthetic transfer

5. Discussions

The theoretical analysis of the simple transfer method is based on the spectral analysis on
graph Laplacian. Low-order basis functions of graph Laplacian tend to represent more
features of the value functions and high-order basis functions tend to represent fewer
features. If low-order basis functions of two tasks are similar, the simple transfer method
performs well. In other words, similar tasks tend to keep similar structures in low-order
basis functions so transferring weights from one task to another could acquire a good
approximate policy. The experimental results show that if two tasks are similar, the
transferred policy of the simple transfer method could be very close to the optimal one.
However, even though the simple transfer method seems to be good in the domain transfer
cases, it could not be used in the task transfer. Furthermore, it still needs more theoretical
analysis as to determine if topological similarity is close enough to apply the simple transfer
method that ensures the simple transferred policy to be close to the optimal one.
The transfer method could be used in three transfer types: the scaling domain transfer, the
topological domain transfer and the task transfer. However, the transfer method is not
always better than the simple transfer method. The experimental results show that the
transferred policy of the transfer method converges earlier than the random policy. In other
words, the evidence demonstrates the accelerated effect of the transfer method. The reason
why the transfer method could work in the task transfer is taking rewards into consideration
on the modified graph Laplacian. However, how to evaluate the accelerated effect of the
transfer method in more objective manner is a challenge because different tasks tend to have
different effects.
In this chapter, we have proposed the transfer method based on the topology of state
transitions for reinforcement learning. It could be used in three transfer types: the scaling
domain transfer, the topological domain transfer and the task transfer. Because the transfer
method is transferring the state-value function, we need a perfect transition model to obtain
the policy. However, to obtain the perfect transition model sometimes is not easy so
extending this idea to the action-value function might be an approach to avoid this problem.
Because the transfer method only deals with the discrete tasks, mapping continuous tasks to
discrete tasks might be an approach to deal with the transfer in continuous tasks.

6. References

Chung, F. R. K. (1997). Spectral graph theory, American Mathematical Society.
Hessling, A. v., & Goel, A. K. (2005). Abstracting reusable cases from reinforcement

learning. Proceedings of the Sixth International Conference on Case-Based Reasoning
Workshop.

Kimberly, F., & Mahadevan, S. (2006). Proto-transfer learning in Markov decision processes
using spectral methods. Proceedings of the Twenty-Third International Conference on
Machine Learning Workshop on Structural Knowledge Transfer for Machine Learning.

Liu, Y., & Stone, P. (2006). Value-function-based transfer for reinforcement learning using
structure mapping. Proceedings of the Twenty-First National Conference on Artificial
Intelligence.

Mahadevan, S. (2005). Proto-value functions: Developmental reinforcement learning.
Proceedings of the Twenty-Second International Conference on Machine Learning.

Autonomous	Agents44

Mahadevan, S., & Maggioni, M. (2006). Proto-value functions: A Laplacian framework for
learning representation and control in Markov decision processes. Technical Report.

Mahadevan, S., & Maggioni, M. (2007). Proto-value functions: A Laplacian framework for
learning representation and control in Markov decision processes. Journal of
Machine Learning Research, 8, 2169-2231.

Puterman, M. L. (2005). Markov decision processes discrete stochastic dynamic programming,
Wiley.

Russell, S., & Norvig, P. (2003). Artificial intelligence a modern approach, Prentice Hall.
Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning an introduction, MIT press.
Taylor, M. E., & Stone, P. (2007). Cross-domain transfer for reinforcement learning.

Proceedings of the Twenty-Fourth International Conference on Machine Learning.
Taylor, M. E.; Stone, P., & Liu, Y. (2005). Value functions for RL-based behavior transfer: A

comparative study. Proceedings of the Twentieth National Conference on Artificial
Intelligence.

Taylor, M. E.; Whiteson, S., & Stone, P. (2007). Transfer via inter-task mappings in policy
search reinforcement learning. Proceedings of the Sixth International Conference on
Autonomous Agents and Multiagent Systems.

Tracking	behaviours	of	cooperative	robots	within	multi-agent	domains 45

Tracking	behaviours	of	cooperative	robots	within	multi-agent	domains

Fernando	Ramos	and	Huberto	Ayanegui

X

Tracking behaviours of cooperative robots
within multi-agent domains

Fernando Ramos1 and Huberto Ayanegui2

1Tecnologico de Monterrey Campus Cuernavaca
2Universidad Autónoma de Tlaxcala

Mexico

1. Introduction

The most important concerns in multi-agent cooperative systems are focused on the
construction of models related with the communication, the interaction and the behavior of
agents participating in a task. This chapter deals with behavioral aspects of cooperative
agents while they are evolving in a task. Behavioral aspects of cooperative agents may give
us precious information about individual, relational and functional roles that the agents
assume during the different steps of a task. For instance, in competitive domains, such as
robotic soccer, teams of agents dispute common resources to reach a goal. The importance of
knowing about behavioral aspects of a team of agents under observation could give us
valuable information to generate counter strategies or tactics to obtain the resources being
disputed.

The behavioral aspects concern strategic and tactical behaviors. The former implies long
term actions where the whole team is involved, while the latter is related with short term
actions where two or more agents are involved. It is important to point out that tactical
behaviors should be submitted to strategic behaviors.

The domains of cooperative agents are commonly complex due to the dynamic conditions
and the multiple interactions between agents. Based on the precedent statements, a
particular interest in this chapter is focused on the analysis of problems that can difficult the
construction of models of behaviors.

Relevant works related with the study of behaviors in multi-agent domains, applied to
soccer robotics, are exposed. We aim to illustrate the problematic, the advantages and
drawbacks of different approaches that have been proposed to model the behavior of soccer-
agents while they are evolving in a task.

Finally, we expose a model able to discover behaviors and tracking patterns in the soccer
domains, which was tested in real games extracted from several matches belonging to
different Robot-Cup Tournaments. The results obtained by applying this model have shown

3

Autonomous	Agents46

that it is able to discover satisfactory behaviors of strategic and tactical patterns as well as
tracking the behaviors while the robots are evolving in a competitive complex task.

2. Cooperative Agents

Cooperative agents are focused on how a loosely-coupled network of problem solvers can
work together to solve problems that are beyond their individual capabilities. Each
problem-solving node in the network is capable of sophisticated problem-solving and can
work independently, but the problems faced by the nodes cannot be completed without
cooperation. Cooperation is necessary because no single node has sufficient expertise,
resources, and information to solve a problem, and different nodes might have expertise for
solving different parts of the problem (Durfee et al., 1989b).

Multi-agent systems research is concerned with the wider problems of designing societies of
autonomous agents, such as why and how agents cooperate (Wooldridge & Jennings, 1994);
how agents can recognize and resolve conflicts (Adler et al., 1989; Galliers, 1988b; Galliers,
1990; Klein & Baskin, 1991; Lander et al, 1991); how agents can negotiate or compromise in
situations where they are apparently at loggerheads (Ephrati & Rosenschein, 1993;
Rosenschein and Zlotkin, 1994); and so on.

An important concern is to design an appropriate organization of a multi-agent system for a
particular domain and environment, such as described in the survey by (Horling & Lesser,
2004). In this work, advantages and disadvantages of these organizations are discussed.
Such organizations can be hierarchies, holarchies, coalitions, teams, congregations, societies,
federations, markets, and matrix organizations.

2.1 Coordination of multi-agent systems
Coordination of tasks is an important aspect directly associated with the success of a plan
that supports a strategy and/or tactic. In addition, the coordination plays an important role
in the correct execution of cooperative actions, in such a way that conflictive situations could
be avoided. In (Chernova & Veloso, 2008) a teacher instructs multiple robots to work
together in coordination through a demonstration of the desired behavior, using a
communication system and a sharing information system. Another distributed approach
that share information, which help to facilitate the coordination and solve problems such as
collisions is described in (Jansen & Sturtevant, 2008). One of the most important complex
dynamic domains of application of multi-agent systems is the soccer robot systems. In
(Candea et al., 2001), aspects of coordination of soccer robots within the framework of
RoboCup are treated, doing emphasis in behavior based techniques. The communication
and distributed coordination is addressed in this work.

Multi-agent teamwork is critical in a large number of agent applications, including training,
education, virtual enterprises and collective robotics (Nair et al., 2004). However, in multi-
agent domains, agent interactions become the domain highly complex for the analysis of
agent-team behaviors, such is the case of robotic soccer. We consider “complex domains“ to
be those with enormous state action spaces, dynamic environment, competitive and real

time. Obviously, when the multiple interactions of both teams are considered the task of
analysis for modeling behaviors is even more complex.

2.2 Behaviors in multi-agent systems
Machine Learning techniques are used to model the robot behaviors from training instances
generated during a play by imitating the human behavior derived from the interaction of a
human that control a robot soccer agent during a play (Aler et al., 2009). Low-level
behaviors take place: looking for the ball, conducting the ball towards the goal or scoring in
the presence of opponent players. Lin et al. (2009), uses color features and hybrid systems
compose of multi-layer perceptrons and genetic algorithms for the recognition of human
behaviors based on trajectory patterns. Social insects provide a rich source of traceable social
behavior for testing multi-agent tracking, prediction and modeling algorithms (Balch et al.,
2001).

The use of predictive systems for studying agent opponent behaviors driven by the
recognition of team actions, such as usual paths performed by an agent, plays performed by
two agents or preferences from bid exchanges, can serve to build behavior patterns that can
serve as guide to recognize behaviors of several agents participating in a cooperative task.
An approach based on HMM serves to determine spatio-temporal behavior agent patterns
through the recognition of team actions (Luotsinen & Bölöni, 2008). Meanwhile, Bayesian
Networks can be used as learning system to characterize behaviors of the opponent. In
particular in (Hindriks & Tykhonov, 2008), Bayesian Networks are used to learn opponent
preferences from bid exchanges by making some assumptions about the preference
structure and rationality of the bidding process. Based on the observations of agent
behaviors the recognition of tactical enemy plans is made in military applications (Mulder &
Voorbraak, 2003; Henniger & Madhavan, 2004) compared the performance of three
predictive models all developed for the same, well-defined modeling task. Specifically, this
paper compares the performance of an Extended Kalman Filter (EKF) based model, a neural
network based model and a Newtonian-based dead-reckoning model, all used to predict an
agent's trajectory and position.

2.3 Tracking behaviors
Multi-Agent systems, such as soccer robots, change constantly or apparently change due to
the dynamic conditions and multiple interactions between agents. Due to this problems, the
tracking of agents becomes very difficult and, by the way, the behaviors assumed by the
agents risk of being quite different even in similar environment conditions. Tracking
behaviors of multi-agent systems is very important in the study of opponent team attitudes
in the design of counter strategies in soccer-agents worlds.

Tambe and Rosenbloom enhance the importance of agent tracking (Tambe & Rosenbloom,
1996). They argue that agent tracking is a key capability required for interactions in multi-
agent environments. It involves monitoring other agents’ observable behaviors and inferring
their unobserved behaviors or high-level goals and plans. Their work examines the
implications of such an agent tracking capability for agent architectures. It specifically
focuses on real-time and dynamic environments, where an intelligent agent is faced with the

Tracking	behaviours	of	cooperative	robots	within	multi-agent	domains 47

that it is able to discover satisfactory behaviors of strategic and tactical patterns as well as
tracking the behaviors while the robots are evolving in a competitive complex task.

2. Cooperative Agents

Cooperative agents are focused on how a loosely-coupled network of problem solvers can
work together to solve problems that are beyond their individual capabilities. Each
problem-solving node in the network is capable of sophisticated problem-solving and can
work independently, but the problems faced by the nodes cannot be completed without
cooperation. Cooperation is necessary because no single node has sufficient expertise,
resources, and information to solve a problem, and different nodes might have expertise for
solving different parts of the problem (Durfee et al., 1989b).

Multi-agent systems research is concerned with the wider problems of designing societies of
autonomous agents, such as why and how agents cooperate (Wooldridge & Jennings, 1994);
how agents can recognize and resolve conflicts (Adler et al., 1989; Galliers, 1988b; Galliers,
1990; Klein & Baskin, 1991; Lander et al, 1991); how agents can negotiate or compromise in
situations where they are apparently at loggerheads (Ephrati & Rosenschein, 1993;
Rosenschein and Zlotkin, 1994); and so on.

An important concern is to design an appropriate organization of a multi-agent system for a
particular domain and environment, such as described in the survey by (Horling & Lesser,
2004). In this work, advantages and disadvantages of these organizations are discussed.
Such organizations can be hierarchies, holarchies, coalitions, teams, congregations, societies,
federations, markets, and matrix organizations.

2.1 Coordination of multi-agent systems
Coordination of tasks is an important aspect directly associated with the success of a plan
that supports a strategy and/or tactic. In addition, the coordination plays an important role
in the correct execution of cooperative actions, in such a way that conflictive situations could
be avoided. In (Chernova & Veloso, 2008) a teacher instructs multiple robots to work
together in coordination through a demonstration of the desired behavior, using a
communication system and a sharing information system. Another distributed approach
that share information, which help to facilitate the coordination and solve problems such as
collisions is described in (Jansen & Sturtevant, 2008). One of the most important complex
dynamic domains of application of multi-agent systems is the soccer robot systems. In
(Candea et al., 2001), aspects of coordination of soccer robots within the framework of
RoboCup are treated, doing emphasis in behavior based techniques. The communication
and distributed coordination is addressed in this work.

Multi-agent teamwork is critical in a large number of agent applications, including training,
education, virtual enterprises and collective robotics (Nair et al., 2004). However, in multi-
agent domains, agent interactions become the domain highly complex for the analysis of
agent-team behaviors, such is the case of robotic soccer. We consider “complex domains“ to
be those with enormous state action spaces, dynamic environment, competitive and real

time. Obviously, when the multiple interactions of both teams are considered the task of
analysis for modeling behaviors is even more complex.

2.2 Behaviors in multi-agent systems
Machine Learning techniques are used to model the robot behaviors from training instances
generated during a play by imitating the human behavior derived from the interaction of a
human that control a robot soccer agent during a play (Aler et al., 2009). Low-level
behaviors take place: looking for the ball, conducting the ball towards the goal or scoring in
the presence of opponent players. Lin et al. (2009), uses color features and hybrid systems
compose of multi-layer perceptrons and genetic algorithms for the recognition of human
behaviors based on trajectory patterns. Social insects provide a rich source of traceable social
behavior for testing multi-agent tracking, prediction and modeling algorithms (Balch et al.,
2001).

The use of predictive systems for studying agent opponent behaviors driven by the
recognition of team actions, such as usual paths performed by an agent, plays performed by
two agents or preferences from bid exchanges, can serve to build behavior patterns that can
serve as guide to recognize behaviors of several agents participating in a cooperative task.
An approach based on HMM serves to determine spatio-temporal behavior agent patterns
through the recognition of team actions (Luotsinen & Bölöni, 2008). Meanwhile, Bayesian
Networks can be used as learning system to characterize behaviors of the opponent. In
particular in (Hindriks & Tykhonov, 2008), Bayesian Networks are used to learn opponent
preferences from bid exchanges by making some assumptions about the preference
structure and rationality of the bidding process. Based on the observations of agent
behaviors the recognition of tactical enemy plans is made in military applications (Mulder &
Voorbraak, 2003; Henniger & Madhavan, 2004) compared the performance of three
predictive models all developed for the same, well-defined modeling task. Specifically, this
paper compares the performance of an Extended Kalman Filter (EKF) based model, a neural
network based model and a Newtonian-based dead-reckoning model, all used to predict an
agent's trajectory and position.

2.3 Tracking behaviors
Multi-Agent systems, such as soccer robots, change constantly or apparently change due to
the dynamic conditions and multiple interactions between agents. Due to this problems, the
tracking of agents becomes very difficult and, by the way, the behaviors assumed by the
agents risk of being quite different even in similar environment conditions. Tracking
behaviors of multi-agent systems is very important in the study of opponent team attitudes
in the design of counter strategies in soccer-agents worlds.

Tambe and Rosenbloom enhance the importance of agent tracking (Tambe & Rosenbloom,
1996). They argue that agent tracking is a key capability required for interactions in multi-
agent environments. It involves monitoring other agents’ observable behaviors and inferring
their unobserved behaviors or high-level goals and plans. Their work examines the
implications of such an agent tracking capability for agent architectures. It specifically
focuses on real-time and dynamic environments, where an intelligent agent is faced with the

Autonomous	Agents48

challenge of tracking the highly flexible mix of goal-driven and reactive behaviors of other
agents, in real-time. This support takes the form of an architectural capability to execute the
other agent’s models, enabling mental simulation of their behaviors. They have
implemented an agent architecture, an experimental variant of the Soar integrated
architecture, that conforms to all of these requirements. Agents based on this architecture
have been implemented to execute two different tasks in a real-time, dynamic, multi-agent
domain.

They propose some of the key requirements for agent tracking in real-time, dynamic
environments. This analysis is based on tasks in a real-world, multi-agent environment and
assumes that an agent is situated in the environment, as it tracks other agents while
simultaneously interacting with them. Key requirements revealed by this analysis include:

1. Tracking other agents’ highly flexible mix of goal-driven and reactive behaviors.
2. Recursively tracking its own actions from the perspective of other agents, so as to
understand their impact on the other agents’ behaviors.
3. Tracking groups of other agents, possibly acting in coordination.
4. Simultaneously tracking and reacting to other agents’ actions.
5. Tracking other agents’ activities in real-time, while resolving ambiguities.

For an illustrative example of agent tracking in pilot agents for a combat simulation
environment, consider first the air-to-air combat scenario in Figure 1, involving fighter jets.
The pilot agent L in the light-shaded aircraft is engaged in a combat with pilot agents D and
E in the dark-shaded aircraft. Since the aircraft are far apart, L can only see its opponents’
actions on radar (and vice versa). In Figure 1-a, L observes its opponents turning their
aircraft in a coordinated fashion to a collision course heading, i.e., with this heading, they
will collide with L at the point shown by x. Since the collision course maneuver is often used
to approach one’s opponent, L infers that its opponents are aware of its (L’s) presence, and
are trying to get closer. Given a highly hostile environment, L may also infer that opponents
are closing into fire their missiles. However, L has a missile with a longer range, so L reaches
first its missile range. L then turns its aircraft to point straight at D’s aircraft and fires a
radar-guided missile at D (Figure 1-b). Subsequently, L executes a 35o fpole turn away from
D’s aircraft (Figure 1-c), to provide radar guidance to its missile, while slowing its rate of
approach to the enemy aircraft.

While neither D nor E can observe this missile on their radar, they do observe L’s pointing
turn followed by its fpole turn. They track these to be part of L’s missile firing behavior, and
infer a missile firing. Therefore, they attempt to evade his missile by executing a 90o beam
turn (Figure 1-d). This causes their aircraft to become invisible to L’s radar. Deprived of
radar guidance, L’s missile is rendered harmless. Meanwhile, in Figure 1-d, L tracks its
opponents’ coordinated beam turn (even while not seeing the complete turn). L then
prepares counter-measures in anticipation of the likely loss of both its missile and radar
contact.

Fig. 1. Pilot agents D and E are engaged in combat with L. An arc on an aircraft’s nose
shows its turn direction.

Finally, Tambe and Rosenbloom argue that if agents are to successfully inhabit complex,
dynamic social worlds, they must obtain architectural support for agent tracking –an
important capability required for agent interactions. Their approach has been used in a
large-scale operational military exercise (Tambe et al., 1995).

The use of relevant parameters helps to increase the robustness of tracking by using also
predictive models. Such is the case of (Muñoz, 2008; Muñoz et al., 2008; Muñoz et al., 2009),
where color information associated with clothes of people, and predictive models based on
Kalman Filter and Bayesian Networks, has helped to reduce the errors of the tracking
system.

The use of classification algorithms, such as K-means, serves to categorize animal tracking
data into various classes of behaviors even in the absence of biological factors that should be
considered (Schwager et al., 2007). An automatic video tracking system is used to study
behaviors, movements and interactions, between insects such as beetles, fruit flies, soil
insects, ticks and spiders (Noldus et al., 2002).

Ukita and Matsuyama propose a real time cooperative multi-target tracking based on Active
Vision Agents that interact dynamically between them. An architecture compose of three
layers that use parallel processes through which the information is exchanged for an
effective cooperation (Ukita & Matsuyama, 2005).

Most of the behaviors in soccer agent systems depend on the strategies to be performed.
Strategies conditioned also tactical and individual plays. Associated with the strategies
specific structures, formations of players, determine importantly the correct execution of
strategies and tactics.

2.4 Formations
Formation for multi-agent systems with large population of members is the main concern of
the work described in (Xiao et al., 2009), where formation information is divided into two
parts: some agents are responsible of global formation information to carry out the
navigation of the whole team. Meanwhile, the other agents regulate their positions delaing
with local information in distributed manner. In (Porfiri et al., 2007) is described a tracking
and formation control for an agent team within a dynamic environment by using shared
information to control their trajectories in a cooperative manner.

Tracking	behaviours	of	cooperative	robots	within	multi-agent	domains 49

challenge of tracking the highly flexible mix of goal-driven and reactive behaviors of other
agents, in real-time. This support takes the form of an architectural capability to execute the
other agent’s models, enabling mental simulation of their behaviors. They have
implemented an agent architecture, an experimental variant of the Soar integrated
architecture, that conforms to all of these requirements. Agents based on this architecture
have been implemented to execute two different tasks in a real-time, dynamic, multi-agent
domain.

They propose some of the key requirements for agent tracking in real-time, dynamic
environments. This analysis is based on tasks in a real-world, multi-agent environment and
assumes that an agent is situated in the environment, as it tracks other agents while
simultaneously interacting with them. Key requirements revealed by this analysis include:

1. Tracking other agents’ highly flexible mix of goal-driven and reactive behaviors.
2. Recursively tracking its own actions from the perspective of other agents, so as to
understand their impact on the other agents’ behaviors.
3. Tracking groups of other agents, possibly acting in coordination.
4. Simultaneously tracking and reacting to other agents’ actions.
5. Tracking other agents’ activities in real-time, while resolving ambiguities.

For an illustrative example of agent tracking in pilot agents for a combat simulation
environment, consider first the air-to-air combat scenario in Figure 1, involving fighter jets.
The pilot agent L in the light-shaded aircraft is engaged in a combat with pilot agents D and
E in the dark-shaded aircraft. Since the aircraft are far apart, L can only see its opponents’
actions on radar (and vice versa). In Figure 1-a, L observes its opponents turning their
aircraft in a coordinated fashion to a collision course heading, i.e., with this heading, they
will collide with L at the point shown by x. Since the collision course maneuver is often used
to approach one’s opponent, L infers that its opponents are aware of its (L’s) presence, and
are trying to get closer. Given a highly hostile environment, L may also infer that opponents
are closing into fire their missiles. However, L has a missile with a longer range, so L reaches
first its missile range. L then turns its aircraft to point straight at D’s aircraft and fires a
radar-guided missile at D (Figure 1-b). Subsequently, L executes a 35o fpole turn away from
D’s aircraft (Figure 1-c), to provide radar guidance to its missile, while slowing its rate of
approach to the enemy aircraft.

While neither D nor E can observe this missile on their radar, they do observe L’s pointing
turn followed by its fpole turn. They track these to be part of L’s missile firing behavior, and
infer a missile firing. Therefore, they attempt to evade his missile by executing a 90o beam
turn (Figure 1-d). This causes their aircraft to become invisible to L’s radar. Deprived of
radar guidance, L’s missile is rendered harmless. Meanwhile, in Figure 1-d, L tracks its
opponents’ coordinated beam turn (even while not seeing the complete turn). L then
prepares counter-measures in anticipation of the likely loss of both its missile and radar
contact.

Fig. 1. Pilot agents D and E are engaged in combat with L. An arc on an aircraft’s nose
shows its turn direction.

Finally, Tambe and Rosenbloom argue that if agents are to successfully inhabit complex,
dynamic social worlds, they must obtain architectural support for agent tracking –an
important capability required for agent interactions. Their approach has been used in a
large-scale operational military exercise (Tambe et al., 1995).

The use of relevant parameters helps to increase the robustness of tracking by using also
predictive models. Such is the case of (Muñoz, 2008; Muñoz et al., 2008; Muñoz et al., 2009),
where color information associated with clothes of people, and predictive models based on
Kalman Filter and Bayesian Networks, has helped to reduce the errors of the tracking
system.

The use of classification algorithms, such as K-means, serves to categorize animal tracking
data into various classes of behaviors even in the absence of biological factors that should be
considered (Schwager et al., 2007). An automatic video tracking system is used to study
behaviors, movements and interactions, between insects such as beetles, fruit flies, soil
insects, ticks and spiders (Noldus et al., 2002).

Ukita and Matsuyama propose a real time cooperative multi-target tracking based on Active
Vision Agents that interact dynamically between them. An architecture compose of three
layers that use parallel processes through which the information is exchanged for an
effective cooperation (Ukita & Matsuyama, 2005).

Most of the behaviors in soccer agent systems depend on the strategies to be performed.
Strategies conditioned also tactical and individual plays. Associated with the strategies
specific structures, formations of players, determine importantly the correct execution of
strategies and tactics.

2.4 Formations
Formation for multi-agent systems with large population of members is the main concern of
the work described in (Xiao et al., 2009), where formation information is divided into two
parts: some agents are responsible of global formation information to carry out the
navigation of the whole team. Meanwhile, the other agents regulate their positions delaing
with local information in distributed manner. In (Porfiri et al., 2007) is described a tracking
and formation control for an agent team within a dynamic environment by using shared
information to control their trajectories in a cooperative manner.

Autonomous	Agents50

Most of the research involved in multi-agent modeling is based on building models
considering partial aspects and non relevant aspects of the team. Nevertheless, relevant
aspects associated with any team should be taken into account in order to model its
behaviors. These aspects include: individual actions (individual aspect), relationships
between agents (tactical aspect) and formation behaviors (strategy aspect). This chapter
emphasizes on the fact of having an expressive representation model which takes into
account different aspects exhibited in a team of agents. The adequate representation of these
aspects enables the discovery of behavior patterns at different levels of abstraction in a
complex domain. Thus, we argue that an expressive representation model at different levels
of abstraction facilitates the discovery of behavior patterns in a complex domain such as
robotic soccer. Some of the most important behaviors are related with strategic and tactical
plays (Ramos & Ayanegui, 2008a) . On the one hand, a team that presumes to play by
following certain strategies should play under the context of formations to assure order,
discipline and organization during a match (Kuhlmann et al., 2005). On the other hand,
tactical plays occur, most of the time, under the context of formations. The discovery of
tactical or team behaviors needs the tracking of both the positions of players at any instant
of the game and relevant relations able to represent particular interactions between players.
Nevertheless, the tracking task becomes very complex because the dynamic conditions of
the game brings about drastic changes of positions and interactions between players, which
difficult the construction of models capable of recognizing and discovering behaviors of
teams playing soccer matches (Lattner et al., 2005). In (Ramos & Ayanegui, 2008b), we
proposed a model able to manage the constant changes occurring in the game, which
consists in building topological structures based on triangular planar graphs. Thus, based on
this model tactical behavior patterns have been discovered and tracked in spite of the
dynamic conditions. The test domain for this research was simulated robotic soccer,
specifically, the Soccer Server System (Noda & Frank, 1998), used in the Robot World Cup
Initiative (Kitano et al., 1997), an international AI and robotics research initiative. A total of
10 matches was analyzed. The results obtained have been shown that the model has been
able of recognizing and discovering behaviors satisfactory.

3. Related works with soccer agents

Raines et al. (2000) developed a system called ISAAC, a tool that helps humans to analyze,
evaluate and understand agent and multi-agent behavior. ISAAC analyzes soccer games off-
line after its end using data from the agents observable behavior traces. An impressive wide
range of behaviors of the individual agent, of agent interactions and of team success or
failure are analyzed (see Figure 2)

Fig. 2 Flow chart for ISAAC model generation and analysis

Data traces are matched against generic interaction pattern only to figure out the success or
failure of the interaction behavior. This information is statistically processed and presented
to the human observer. Authors propose an analysis of the events leading up to key events,
such as shots on goal in the case of the RoboCup soccer simulation. ISAAC analyses the
situations when the defence of the goal succeeds or fails with respect to a number of
variables, such as the distance of the closest defender, the angle of the closest defender with
respect to the goal, and the angle of the attacker from the centre of the field, the angle of the
shot on goal and the force of the kick. The user is able to do a perturbation analysis to
determine which changes in a rule will increase the goal success rate (e.g. changing the
angle at goal, increasing the force of the kick). This enables analysing teams to seek
improvements. ISAAC produces learned rules to explain the performance of the team as
well as predict future outcomes. However, there is no automated way for these learned rules
to be used by the agent team; rather, the team designer analyzes the rules and decides how
to modify the team.

Without a priori knowledge of current team assignments, the behavior recognition problem
is challenging since behaviors are characterized by the aggregate motion of the entire team
and cannot generally be determined by observing the movements of a single agent in
isolation. To handle this problem, Sukthankar and Sycara (2006) introduce the algorithm
STABR (Simultaneous Team Assignment and Behavior Recognition), that generates
behavior annotations from spatio-temporal agent traces. STABR completely annotates agent
traces with (1) the correct sequence of low-level actions performed by each agent and (2) an
assignment of agents to teams over time. Such algorithm employs a randomized search
strategy (Fischler & Bolles, 1981) to identify candidate team assignments at selected time
steps; these hypotheses are evaluated using dynamic programming to derive a
parsimonious explanation for the entire observed spatio-temporal sequence. To prune the
number of hypotheses, potential team assignments are fitted to a parameterized team
behavior model; poorly-fitting hypotheses are eliminated before the dynamic programming
phase. The proposed approach is able to perform accurate team behavior recognition
without exhaustive search over the partition set of potential team assignments, as
demonstrated on several scenarios of simulated military maneuvers.

3.1 Problem Formulation
The formulation of the problem is: Let A ={ a0, a1, . . . , aN-1} be the set of agents in the
scenario. A team consists of a subset of agents, and we require that an agent only participate
in one team at any given time; thus a team assignment is a set partition on A. An agent that
is not currently a member of any team is known as a singleton, and is unrestricted in its
motion. By contrast, the agents in a team are constrained to move according to a set of team
behaviors, B. The subset of behaviors available to a given team is specified by the domain
and can depend on the number of agents in the formation and their relative configurations.
For instance, the domain could specify that four agents in a square formation may execute a
“wheel” (formation advances in an arc by rotating about a corner), but not a “pivot”
(formation rotates about its center), which may be restricted to teams of three agents. In the
course of a scenario, agents (either singletons or subsets of disbanding teams) can assemble
into new teams; similarly, teams can disband to enable their members to form new teams or
to operate as singletons. Thus the team assignment is expected to change over time during

Tracking	behaviours	of	cooperative	robots	within	multi-agent	domains 51

Most of the research involved in multi-agent modeling is based on building models
considering partial aspects and non relevant aspects of the team. Nevertheless, relevant
aspects associated with any team should be taken into account in order to model its
behaviors. These aspects include: individual actions (individual aspect), relationships
between agents (tactical aspect) and formation behaviors (strategy aspect). This chapter
emphasizes on the fact of having an expressive representation model which takes into
account different aspects exhibited in a team of agents. The adequate representation of these
aspects enables the discovery of behavior patterns at different levels of abstraction in a
complex domain. Thus, we argue that an expressive representation model at different levels
of abstraction facilitates the discovery of behavior patterns in a complex domain such as
robotic soccer. Some of the most important behaviors are related with strategic and tactical
plays (Ramos & Ayanegui, 2008a) . On the one hand, a team that presumes to play by
following certain strategies should play under the context of formations to assure order,
discipline and organization during a match (Kuhlmann et al., 2005). On the other hand,
tactical plays occur, most of the time, under the context of formations. The discovery of
tactical or team behaviors needs the tracking of both the positions of players at any instant
of the game and relevant relations able to represent particular interactions between players.
Nevertheless, the tracking task becomes very complex because the dynamic conditions of
the game brings about drastic changes of positions and interactions between players, which
difficult the construction of models capable of recognizing and discovering behaviors of
teams playing soccer matches (Lattner et al., 2005). In (Ramos & Ayanegui, 2008b), we
proposed a model able to manage the constant changes occurring in the game, which
consists in building topological structures based on triangular planar graphs. Thus, based on
this model tactical behavior patterns have been discovered and tracked in spite of the
dynamic conditions. The test domain for this research was simulated robotic soccer,
specifically, the Soccer Server System (Noda & Frank, 1998), used in the Robot World Cup
Initiative (Kitano et al., 1997), an international AI and robotics research initiative. A total of
10 matches was analyzed. The results obtained have been shown that the model has been
able of recognizing and discovering behaviors satisfactory.

3. Related works with soccer agents

Raines et al. (2000) developed a system called ISAAC, a tool that helps humans to analyze,
evaluate and understand agent and multi-agent behavior. ISAAC analyzes soccer games off-
line after its end using data from the agents observable behavior traces. An impressive wide
range of behaviors of the individual agent, of agent interactions and of team success or
failure are analyzed (see Figure 2)

Fig. 2 Flow chart for ISAAC model generation and analysis

Data traces are matched against generic interaction pattern only to figure out the success or
failure of the interaction behavior. This information is statistically processed and presented
to the human observer. Authors propose an analysis of the events leading up to key events,
such as shots on goal in the case of the RoboCup soccer simulation. ISAAC analyses the
situations when the defence of the goal succeeds or fails with respect to a number of
variables, such as the distance of the closest defender, the angle of the closest defender with
respect to the goal, and the angle of the attacker from the centre of the field, the angle of the
shot on goal and the force of the kick. The user is able to do a perturbation analysis to
determine which changes in a rule will increase the goal success rate (e.g. changing the
angle at goal, increasing the force of the kick). This enables analysing teams to seek
improvements. ISAAC produces learned rules to explain the performance of the team as
well as predict future outcomes. However, there is no automated way for these learned rules
to be used by the agent team; rather, the team designer analyzes the rules and decides how
to modify the team.

Without a priori knowledge of current team assignments, the behavior recognition problem
is challenging since behaviors are characterized by the aggregate motion of the entire team
and cannot generally be determined by observing the movements of a single agent in
isolation. To handle this problem, Sukthankar and Sycara (2006) introduce the algorithm
STABR (Simultaneous Team Assignment and Behavior Recognition), that generates
behavior annotations from spatio-temporal agent traces. STABR completely annotates agent
traces with (1) the correct sequence of low-level actions performed by each agent and (2) an
assignment of agents to teams over time. Such algorithm employs a randomized search
strategy (Fischler & Bolles, 1981) to identify candidate team assignments at selected time
steps; these hypotheses are evaluated using dynamic programming to derive a
parsimonious explanation for the entire observed spatio-temporal sequence. To prune the
number of hypotheses, potential team assignments are fitted to a parameterized team
behavior model; poorly-fitting hypotheses are eliminated before the dynamic programming
phase. The proposed approach is able to perform accurate team behavior recognition
without exhaustive search over the partition set of potential team assignments, as
demonstrated on several scenarios of simulated military maneuvers.

3.1 Problem Formulation
The formulation of the problem is: Let A ={ a0, a1, . . . , aN-1} be the set of agents in the
scenario. A team consists of a subset of agents, and we require that an agent only participate
in one team at any given time; thus a team assignment is a set partition on A. An agent that
is not currently a member of any team is known as a singleton, and is unrestricted in its
motion. By contrast, the agents in a team are constrained to move according to a set of team
behaviors, B. The subset of behaviors available to a given team is specified by the domain
and can depend on the number of agents in the formation and their relative configurations.
For instance, the domain could specify that four agents in a square formation may execute a
“wheel” (formation advances in an arc by rotating about a corner), but not a “pivot”
(formation rotates about its center), which may be restricted to teams of three agents. In the
course of a scenario, agents (either singletons or subsets of disbanding teams) can assemble
into new teams; similarly, teams can disband to enable their members to form new teams or
to operate as singletons. Thus the team assignment is expected to change over time during

Autonomous	Agents52

the course of a scenario. The team assignments over time and the behavior executed by each
team are hidden. Assume that the input consists only of a spatio-temporal traces, which is a
sequence of noisy observations of the 2D position of each agent through time, ai(t) Є R2.

To illustrate this with an example, Figure 3 shows several frames from a scenario with 16
agents. In Figure 3(a), 12 of the agents are arrayed in three teams of four agents in a square
formation, ({a0, . . . , a3}, { a4, . . . , a7}, { a8, . . . , a11}), with the remaining four agents as
singletons. In Figure 3(b), the squares are converging towards the central area and the
formations are starting to interleave. In Figure 3(c), the squares are disbanding and those are
regrouping into four groups of three, arrayed as triangles. Finally, in Figure 3(d), the
triangles are moving away from the central area.

Fig. 3. (a) An example scenario with three teams of 4 agents, (({a0, . . . , a3}, { a4, . . . , a7},
{ a8, . . . , a11}) and four singleton agents (a12, . . . , a15); (b) teams maneuver while maintaining
formation and converge to central area; (c) the three teams disband and regroup into four
teams of 3 agents; (d) the various teams scatter as units. The interleaving of agent
formations, the presence of singletons and observation noise (suppressed here) makes the
team assignment and behavior recognition challenging.

The goal is to recover a team and a behavior assignment for every agent aiЄA at every time-
step t. It is important to note that one cannot, in general, infer the behavior of a team by
examining the motion trace of any single agent. Similarly, one cannot assign an agent to a
team without confirming that the behavior of the team is legal.

Ideally, one may wish to consider every legal agent-to-team assignment and team-to-
behavior assignment at every time-step and then select the sequence that best matches the
observed data. However, a straightforward implementation of this idea is computationally
infeasible.

STABR analyzes spatio-temporal traces in three stages.

• First, it performs a static analysis of agent positions at each time-step to identify
potential agent configurations that may correspond to known formations; these are
used as an initial set of agent-to-team assignment hypotheses in later stages.
STABR maintains multiple potentially-conflicting assignments for an agent, if there
is spatial support.

• Second, STABR examines hypothesized team assignments in isolation and
determines whether they have sufficient local spatio-temporal support. Pruning
unlikely hypotheses at this stage is crucial since it greatly affects the performance
of the last stage. This analysis also enables STABR to determine plausible behavior
assignments for each of the surviving hypotheses.

• Third, these agent-to-team hypotheses are used to generate complete partitions
over the agents. In the worst case, this state space could be exponential in the
number of surviving hypotheses, underscoring the benefits of pruning. STABR
then organizes the states (partitions) over the spatio-temporal sequence in the form
of a lattice and employs dynamic programming to identify minimal cost solutions.
These correspond to agent-to-team and team-to-behavior assignments that are a
good fit to the observed sequence.

Experiments on several simulated military maneuvers demonstrated that STABR is accurate
at both team assignment and behavior recognition.

Riley used a set of predefined movement models and compare these with the actual
movement of the players in set play situation (Riley et al., 2002). In new set play situations
the coach then uses the gathered information to predict the opponent agent's behavior and
to generate a plan for his own players. The main drawback of Riley’s model is that it is built
based on individual movements of players without taking into account the relationships
between agents. Raines and colleagues (Nair et al., 2004) presented a system called ISAAC
which analyzes a game in mode off-line to generate rules about the success of players.
ISAAC used the individual and relational models in an independent way. It tries to discover
patterns in each level based on events that affect directly the result of the game. Two key
differences between ISAAC and our approach are: we build a model of a team based on
behavior patterns, independently of success or failures events; ISAAC is unable to discover
the strategic behavior of a team. Bezek and colleagues (Bezek et al., 2006) presented a
method to discover pass patterns incorporating domain knowledge and providing a graphic
representation for detected strategies. Although their approach obtains tactical behavior
patterns, they only consider the players involved in the passes without taking into account
the notion of team behaviors. Visser and colleagues (Visser et al., 2001) recognized the
formation of the opponent team using a neural networks model. The output was a
predefined set of formations. The main difference with our approach is that Visser and
colleagues did not represent relations between players. As Visser mentioned in his work, his
approach is unable of tracking the changes of formations. This is because the lack of
structures due to the absence of relations between players.

4. Multi-Level representation model

We emphasize on the fact of having an expressive representation model which takes into
account different aspects exhibited in a team of agents. The adequate representation of these
aspects enables the discovering behavior patterns at different levels of abstraction in a
complex domain. In this work, we present an expressive representation model able to
discover behavior patterns by taking into account various aspects such as individual aspects
about agents, relationships between agents (tactical aspect) and formation behaviors
(strategy aspect). In order to facilitate the discovery of behavior patterns, we need to have a
representation model able to express relevant aspects at different abstraction levels. Such
model should endow a reasoning system, through an expressive representation model, with
the capacity of discovering strategic, tactical and individual behavior patterns.

Tracking	behaviours	of	cooperative	robots	within	multi-agent	domains 53

the course of a scenario. The team assignments over time and the behavior executed by each
team are hidden. Assume that the input consists only of a spatio-temporal traces, which is a
sequence of noisy observations of the 2D position of each agent through time, ai(t) Є R2.

To illustrate this with an example, Figure 3 shows several frames from a scenario with 16
agents. In Figure 3(a), 12 of the agents are arrayed in three teams of four agents in a square
formation, ({a0, . . . , a3}, { a4, . . . , a7}, { a8, . . . , a11}), with the remaining four agents as
singletons. In Figure 3(b), the squares are converging towards the central area and the
formations are starting to interleave. In Figure 3(c), the squares are disbanding and those are
regrouping into four groups of three, arrayed as triangles. Finally, in Figure 3(d), the
triangles are moving away from the central area.

Fig. 3. (a) An example scenario with three teams of 4 agents, (({a0, . . . , a3}, { a4, . . . , a7},
{ a8, . . . , a11}) and four singleton agents (a12, . . . , a15); (b) teams maneuver while maintaining
formation and converge to central area; (c) the three teams disband and regroup into four
teams of 3 agents; (d) the various teams scatter as units. The interleaving of agent
formations, the presence of singletons and observation noise (suppressed here) makes the
team assignment and behavior recognition challenging.

The goal is to recover a team and a behavior assignment for every agent aiЄA at every time-
step t. It is important to note that one cannot, in general, infer the behavior of a team by
examining the motion trace of any single agent. Similarly, one cannot assign an agent to a
team without confirming that the behavior of the team is legal.

Ideally, one may wish to consider every legal agent-to-team assignment and team-to-
behavior assignment at every time-step and then select the sequence that best matches the
observed data. However, a straightforward implementation of this idea is computationally
infeasible.

STABR analyzes spatio-temporal traces in three stages.

• First, it performs a static analysis of agent positions at each time-step to identify
potential agent configurations that may correspond to known formations; these are
used as an initial set of agent-to-team assignment hypotheses in later stages.
STABR maintains multiple potentially-conflicting assignments for an agent, if there
is spatial support.

• Second, STABR examines hypothesized team assignments in isolation and
determines whether they have sufficient local spatio-temporal support. Pruning
unlikely hypotheses at this stage is crucial since it greatly affects the performance
of the last stage. This analysis also enables STABR to determine plausible behavior
assignments for each of the surviving hypotheses.

• Third, these agent-to-team hypotheses are used to generate complete partitions
over the agents. In the worst case, this state space could be exponential in the
number of surviving hypotheses, underscoring the benefits of pruning. STABR
then organizes the states (partitions) over the spatio-temporal sequence in the form
of a lattice and employs dynamic programming to identify minimal cost solutions.
These correspond to agent-to-team and team-to-behavior assignments that are a
good fit to the observed sequence.

Experiments on several simulated military maneuvers demonstrated that STABR is accurate
at both team assignment and behavior recognition.

Riley used a set of predefined movement models and compare these with the actual
movement of the players in set play situation (Riley et al., 2002). In new set play situations
the coach then uses the gathered information to predict the opponent agent's behavior and
to generate a plan for his own players. The main drawback of Riley’s model is that it is built
based on individual movements of players without taking into account the relationships
between agents. Raines and colleagues (Nair et al., 2004) presented a system called ISAAC
which analyzes a game in mode off-line to generate rules about the success of players.
ISAAC used the individual and relational models in an independent way. It tries to discover
patterns in each level based on events that affect directly the result of the game. Two key
differences between ISAAC and our approach are: we build a model of a team based on
behavior patterns, independently of success or failures events; ISAAC is unable to discover
the strategic behavior of a team. Bezek and colleagues (Bezek et al., 2006) presented a
method to discover pass patterns incorporating domain knowledge and providing a graphic
representation for detected strategies. Although their approach obtains tactical behavior
patterns, they only consider the players involved in the passes without taking into account
the notion of team behaviors. Visser and colleagues (Visser et al., 2001) recognized the
formation of the opponent team using a neural networks model. The output was a
predefined set of formations. The main difference with our approach is that Visser and
colleagues did not represent relations between players. As Visser mentioned in his work, his
approach is unable of tracking the changes of formations. This is because the lack of
structures due to the absence of relations between players.

4. Multi-Level representation model

We emphasize on the fact of having an expressive representation model which takes into
account different aspects exhibited in a team of agents. The adequate representation of these
aspects enables the discovering behavior patterns at different levels of abstraction in a
complex domain. In this work, we present an expressive representation model able to
discover behavior patterns by taking into account various aspects such as individual aspects
about agents, relationships between agents (tactical aspect) and formation behaviors
(strategy aspect). In order to facilitate the discovery of behavior patterns, we need to have a
representation model able to express relevant aspects at different abstraction levels. Such
model should endow a reasoning system, through an expressive representation model, with
the capacity of discovering strategic, tactical and individual behavior patterns.

Autonomous	Agents54

The different levels of abstraction, each one representing a different aspect of the team, are
built in a bottom-up mode, that is, higher levels are constructed based on lower levels. For
instance, the representation of formations of a team is based on the relational level, which is
composed of relations between zones. At the same time, each zone represents a relationship
between individuals (players). As an example, the formation 4:3:3 represents four defenders,
three midfielders and three forwards. The proposed multi-layered representation model is
shown in Figure 4.

Fig. 4. Representation Model

Individual level. It represents the individual information of the objects in the field, such as
players and ball. Such information can be acquired from the Soccer Simulator System
directly.

Relational level. It represents the relationship between players.

Formation level. A formation represents the relation among defenses, midfielders and
forwards of a team. The formation reveals part of the general strategy of a team. Formations
are the way a soccer team lines up its defense, midfield, and attack line during a match.
When talking about formations, defenders are listed first and then midfielders and
forwards. For example, a code 5:3:2 represents a formation composed by five defenders,
three midfielders, and two forwards (see Figure 5). As in the real soccer game, the
goalkeeper is not considered as part of the formation. Usually, teams playing in strategic
and organized ways search for respecting predefined structures or formations.

Fig. 5. A 5:3:2 formation

4.1 Recognition of formations

The focus of this work is on teams that play following patterns of high level of abstraction
(formations) based on a distribution of zones named Defensive (D), Middle (M) and Attack
(A), as in classic soccer game. These patterns will be represented as follows: D:M:A. Due to
the dynamic conditions of the soccer game, the players are in constant movement and
temporally breaking the alignment of players belonging to a zone. To handle the constant
changes without an expressive representation of the relations between players can result in
an inefficient way of recognizing formations submitted to a dynamic environment. In the
next section will be explained how the zones and the players belonging to them are
recognized in this work

4.1.1 Recognition of team zones
As in human soccer domains the players in robotic soccer should tend to be organized. That
is, each player has a strategic position that defines its movement range in the soccer field.
The role of a player is quite related with a predefined area within which an individual
player can play basically in the field. Any behaviors of a player depend on its current role.
According to the position of the player, roles in robotic soccer can be divided into four
types: goalkeeper, defenders, midfielders and forwards. Different roles are associated with
different positions and different behaviors that players assume. However, due to the
dynamic changing conditions of a match, a defender could become a forward temporarily as
his team is trying to attack. So the roles of a player are dynamically changing. Consequently,
the recognition of formation patterns is difficult due to the dynamic and real time conditions
of the environment. In a first step, we will discover what players belong to what zone. For
this, the clustering algorithm, K-means (MacQueen, 1967), is applied. K-means classifies a
given data set through a certain number of clusters (assume k clusters) fixed a priori. In this

Tracking	behaviours	of	cooperative	robots	within	multi-agent	domains 55

The different levels of abstraction, each one representing a different aspect of the team, are
built in a bottom-up mode, that is, higher levels are constructed based on lower levels. For
instance, the representation of formations of a team is based on the relational level, which is
composed of relations between zones. At the same time, each zone represents a relationship
between individuals (players). As an example, the formation 4:3:3 represents four defenders,
three midfielders and three forwards. The proposed multi-layered representation model is
shown in Figure 4.

Fig. 4. Representation Model

Individual level. It represents the individual information of the objects in the field, such as
players and ball. Such information can be acquired from the Soccer Simulator System
directly.

Relational level. It represents the relationship between players.

Formation level. A formation represents the relation among defenses, midfielders and
forwards of a team. The formation reveals part of the general strategy of a team. Formations
are the way a soccer team lines up its defense, midfield, and attack line during a match.
When talking about formations, defenders are listed first and then midfielders and
forwards. For example, a code 5:3:2 represents a formation composed by five defenders,
three midfielders, and two forwards (see Figure 5). As in the real soccer game, the
goalkeeper is not considered as part of the formation. Usually, teams playing in strategic
and organized ways search for respecting predefined structures or formations.

Fig. 5. A 5:3:2 formation

4.1 Recognition of formations

The focus of this work is on teams that play following patterns of high level of abstraction
(formations) based on a distribution of zones named Defensive (D), Middle (M) and Attack
(A), as in classic soccer game. These patterns will be represented as follows: D:M:A. Due to
the dynamic conditions of the soccer game, the players are in constant movement and
temporally breaking the alignment of players belonging to a zone. To handle the constant
changes without an expressive representation of the relations between players can result in
an inefficient way of recognizing formations submitted to a dynamic environment. In the
next section will be explained how the zones and the players belonging to them are
recognized in this work

4.1.1 Recognition of team zones
As in human soccer domains the players in robotic soccer should tend to be organized. That
is, each player has a strategic position that defines its movement range in the soccer field.
The role of a player is quite related with a predefined area within which an individual
player can play basically in the field. Any behaviors of a player depend on its current role.
According to the position of the player, roles in robotic soccer can be divided into four
types: goalkeeper, defenders, midfielders and forwards. Different roles are associated with
different positions and different behaviors that players assume. However, due to the
dynamic changing conditions of a match, a defender could become a forward temporarily as
his team is trying to attack. So the roles of a player are dynamically changing. Consequently,
the recognition of formation patterns is difficult due to the dynamic and real time conditions
of the environment. In a first step, we will discover what players belong to what zone. For
this, the clustering algorithm, K-means (MacQueen, 1967), is applied. K-means classifies a
given data set through a certain number of clusters (assume k clusters) fixed a priori. In this

Autonomous	Agents56

work, k=3 such that three zones will be defined: defensive, middle and attack zones. From
the log file (game film), the data from one team is extracted and K-means is applied in each
simulation cycle of the game. The positions of each player, with respect to the x axis, are
taken as the input of the clustering algorithm and the output of clustering is the
classification, according to their x position, of all players of the team in the three clusters.
Clustering algorithm is useful to determine the three zones of a team but it is not able to
represent the multiple relations between players of each zone. Given that patterns of
formations are based on relations that determine structures then an additional model is
crucial for the recognition of formation patterns. The next section describes an adequate
representation model able to facilitate the recognition of formation patterns.

4.2 Topological Structure Model
A formation is represented by a set of relations between players. Thus, the relations
represent the structure that supports a formation. So, a change of relations between players
entails a change of formation. It is needed at least the change of one relation to transform
one structure into another one. Constant changes of relations could occur because the
multiple relations in a formation and the dynamic nature of a match. Figure 6(a) illustrates
the relations of each one of the players with the rest of their teammates. A total of 90
relations are obtained by n(n − 1), where n represents the number of players. This formula
considers two relations by each pair of players. Thus, one relation is represented by the link
from player A to player B and the second one from player B to player A. For practical
reasons, just one of these relations is considered. Thus, the total of relations is 45. Figure 6(b)
illustrates these 45 relations.

Fig. 6. All possible relations between players of a soccer team. (a) 90 relations and (b) 45
relations.

On the one hand, the control of such number of relations becomes very difficult to be
managed because any change of relations would produce a change of structure. In addition,
it could happen that several changes of relations occur at the same time then the problem of
detecting what relations are provoking changes of structures becomes much more difficult
to be managed. On the other hand, the 45 relations are not relevant in a real match, because
a relevant relation is the one in which a player uses to exchange passes and positions in a
strategic way. In this work, the goal is to build a simple but robust structure based on
relevant relations modeled by a planar graph.

A graph G is planar if it can be represented on a plane in such a way that the nodes
represent different points and two edges should be encountered only at their ends. The
intersection of two edges out of their ends breaks the planar property of the graph G. This
graph G is also named as planar topological graph (Berge, 1983). Two or more graphs are
topologically the same if they can be transformed by elastic deformations until their form
coincides.

The relevant relations used to build the topological structure are related with the notion of
neighborhood. Thus, an agent remains related with his closer neighbor belonging to his
zone (defensive (D), medium (M) or attack (A)), and his closer neighbor belonging to the
neighbor zone as illustrated in Figure 7(a) and Figure 7(b). Figure 7(c) shows the integration
of both kinds of relations for a 4:3:3 formation.

Fig. 7. (a) Step 1. Neighbor nodes of the same zone are linked. (b) Step 2. Neighbor nodes of
neighbor zones are linked. (c) Planar graph obtained from step 1 and step 2.

Figure 7(c) shows the planar graph represented by triangular sub-graphs as result of
applying the previous two steps. The total number of relations of a graph, which has been
built based on the method described above, is given by Nm +15; where Nm is the number of
nodes of the middle zone (Due to the lack of space the deduction of this formula is not
described in this work). For instance, for a formation 4:4:2, the number of relations will be
19, because Nm = 4. The advantages of this method that the number of relations has been
reduced from 45 to 19 for the formation 4:4:2. Then, 26 relations have been eliminated.
Triangular graphs are able to assume a topological behavior (Ramos & Ayanegui, 2008a).
That is, even if a structure is deformed because positional changes of nodes, the topological
property of the triangular graphs helps to preserve the structure.

4.3 Pattern Recognition Process
Figure 8 shows the process to recognize patterns of formations and changes of structures
that support the formations. The first module serves to determine the zones by using a
clustering algorithm; the second module builds the multiple relations which are expressed
by a topological graph and finally in the third module the changes of structures are detected
if topological properties of a defined structure have been broken.

Tracking	behaviours	of	cooperative	robots	within	multi-agent	domains 57

work, k=3 such that three zones will be defined: defensive, middle and attack zones. From
the log file (game film), the data from one team is extracted and K-means is applied in each
simulation cycle of the game. The positions of each player, with respect to the x axis, are
taken as the input of the clustering algorithm and the output of clustering is the
classification, according to their x position, of all players of the team in the three clusters.
Clustering algorithm is useful to determine the three zones of a team but it is not able to
represent the multiple relations between players of each zone. Given that patterns of
formations are based on relations that determine structures then an additional model is
crucial for the recognition of formation patterns. The next section describes an adequate
representation model able to facilitate the recognition of formation patterns.

4.2 Topological Structure Model
A formation is represented by a set of relations between players. Thus, the relations
represent the structure that supports a formation. So, a change of relations between players
entails a change of formation. It is needed at least the change of one relation to transform
one structure into another one. Constant changes of relations could occur because the
multiple relations in a formation and the dynamic nature of a match. Figure 6(a) illustrates
the relations of each one of the players with the rest of their teammates. A total of 90
relations are obtained by n(n − 1), where n represents the number of players. This formula
considers two relations by each pair of players. Thus, one relation is represented by the link
from player A to player B and the second one from player B to player A. For practical
reasons, just one of these relations is considered. Thus, the total of relations is 45. Figure 6(b)
illustrates these 45 relations.

Fig. 6. All possible relations between players of a soccer team. (a) 90 relations and (b) 45
relations.

On the one hand, the control of such number of relations becomes very difficult to be
managed because any change of relations would produce a change of structure. In addition,
it could happen that several changes of relations occur at the same time then the problem of
detecting what relations are provoking changes of structures becomes much more difficult
to be managed. On the other hand, the 45 relations are not relevant in a real match, because
a relevant relation is the one in which a player uses to exchange passes and positions in a
strategic way. In this work, the goal is to build a simple but robust structure based on
relevant relations modeled by a planar graph.

A graph G is planar if it can be represented on a plane in such a way that the nodes
represent different points and two edges should be encountered only at their ends. The
intersection of two edges out of their ends breaks the planar property of the graph G. This
graph G is also named as planar topological graph (Berge, 1983). Two or more graphs are
topologically the same if they can be transformed by elastic deformations until their form
coincides.

The relevant relations used to build the topological structure are related with the notion of
neighborhood. Thus, an agent remains related with his closer neighbor belonging to his
zone (defensive (D), medium (M) or attack (A)), and his closer neighbor belonging to the
neighbor zone as illustrated in Figure 7(a) and Figure 7(b). Figure 7(c) shows the integration
of both kinds of relations for a 4:3:3 formation.

Fig. 7. (a) Step 1. Neighbor nodes of the same zone are linked. (b) Step 2. Neighbor nodes of
neighbor zones are linked. (c) Planar graph obtained from step 1 and step 2.

Figure 7(c) shows the planar graph represented by triangular sub-graphs as result of
applying the previous two steps. The total number of relations of a graph, which has been
built based on the method described above, is given by Nm +15; where Nm is the number of
nodes of the middle zone (Due to the lack of space the deduction of this formula is not
described in this work). For instance, for a formation 4:4:2, the number of relations will be
19, because Nm = 4. The advantages of this method that the number of relations has been
reduced from 45 to 19 for the formation 4:4:2. Then, 26 relations have been eliminated.
Triangular graphs are able to assume a topological behavior (Ramos & Ayanegui, 2008a).
That is, even if a structure is deformed because positional changes of nodes, the topological
property of the triangular graphs helps to preserve the structure.

4.3 Pattern Recognition Process
Figure 8 shows the process to recognize patterns of formations and changes of structures
that support the formations. The first module serves to determine the zones by using a
clustering algorithm; the second module builds the multiple relations which are expressed
by a topological graph and finally in the third module the changes of structures are detected
if topological properties of a defined structure have been broken.

Autonomous	Agents58

Fig. 8. Process to recognize pattern formations

Module 1. Recognition of team zones. The algorithm of clustering is performed during the first
cycles of the match and it is stopped until the number of players in each group does not
change. In this way, the three zones of a team, defensive, middle and attack zones are
recognized.
Module 2. Building multiple relations and a topological graph. Based on the three zones
recognized by the clustering algorithm and relevant multiple relations a topological planar
graph is built.
Module 3. Recognition of Changes of Structures that support Team Formations. Changes of
structures are detected if topological properties of a defined structure have been broken. A
topological graph is, by definition, a planar graph (Berge, 1983). In a planar graph any pair
of nodes belonging to the graph can be linked without any intersection of links. Otherwise,
if the topological property of the graph has been broken then another structure supporting a
formation should be built. Intersections occur when players change their roles in order to
build a new formation or due to reactive behavior in response to the opponent. If
intersections of links occur, clustering algorithm should redefine the zones and a new
topological graph should be built.

5. Discovering of Tactical Behaviour Patterns

The process to discover tactical behavior patterns is illustrated in Figure 9. The following six
steps describe such process:

Fig. 9. The steps to discover the tactical behavior patterns

Step 1.Read logfile. Input data mainly related with players and ball positions;

Step 2.Extraction of similar paths. A set of ball’s paths occurring under similar contexts are
extracted. The extracted paths in Figure9 shows paths starting from the middle zone of the
field and then distributed either to the right or to the left side until ball reach a zone close to
the goal;

Step 3.First Freeman codification. The set of extracted paths are coded to be represented by
a sequence of orientations using a Freeman codification (Freeman, 1973) which is composed
of eight orientations.

Step 4.Second Freeman codification. The sequence of step 3 is recoded to obtain a more
abstract code. Let A,B,...,H be the new abstract segments where each one represents a
freeman code sequence with the same orientation, such that, A represents the sequence of
0’s, B represents the sequence of 1’s, and so on. Thus, a path coded as 7-7-7-1-1-1 can be
represented by the code HB;

Step 5.Identification of most frequent sub-sequences. A method based on a generalization of
a tree is applied to discover the general behavior patterns representing the paths of tactical
plays. For instance, let’s take two paths: BAH and ABA. Let’s suppose that the trie is empty.
It will first insert BAH into it. It will then insert the two remaining suffixes of BAH: {AH, H}.
Next, it will then insert the next path and its suffixes: {ABA, BA, A}, into the trie. The most
common single sub-sequence is A, the most common two subsequences is BA.

Finally, the players and zones are associated to the generalized paths. The topological
structures used to track formations have been a very good support to determine the players
participating in tactical plays, as well as the zones through which the plays have taken place.
Thanks to the topological graph, we are able to know at each instant of the game the players
and their relations participating in a play.

6. Experimental Results

In this section, important experimental results are analyzed. They are derived from two
teams: The TsinghuAeolus soccer team, who won the Simulation RoboCup Championship
in 2002. It is presented an analysis of the match between TsinguAeolus vs. Everest; and
theWrightEagle team, who won the second place in the same competition that held in 2007.
The model has been proven in nine matches, but for the relevance of the teams, we present
the analysis of results of two matches, one for the TsinguAeolus and one for the
WrightEagle. Figure 10 shows a sequence simulation cycles that represent the structures
involving the soccer-agents in a path of a tactical play. Because of the lack of space it is
shown some of the sub-graphs that compose the total sequence of sub-graphs representing
the path (in fact, there are approximately 50 sub-graphs for this tactical play). As can be
seen, the shadowed sub-graphs contain the soccer agents involved in the tactical plays. They
are in this case: the middle center, the right middle, the right forward, the center forward
and the left forward.

Fig. 10. Sequence of sub-graphs representing a tactical play incorporating agents and field zones

Tracking	behaviours	of	cooperative	robots	within	multi-agent	domains 59

Fig. 8. Process to recognize pattern formations

Module 1. Recognition of team zones. The algorithm of clustering is performed during the first
cycles of the match and it is stopped until the number of players in each group does not
change. In this way, the three zones of a team, defensive, middle and attack zones are
recognized.
Module 2. Building multiple relations and a topological graph. Based on the three zones
recognized by the clustering algorithm and relevant multiple relations a topological planar
graph is built.
Module 3. Recognition of Changes of Structures that support Team Formations. Changes of
structures are detected if topological properties of a defined structure have been broken. A
topological graph is, by definition, a planar graph (Berge, 1983). In a planar graph any pair
of nodes belonging to the graph can be linked without any intersection of links. Otherwise,
if the topological property of the graph has been broken then another structure supporting a
formation should be built. Intersections occur when players change their roles in order to
build a new formation or due to reactive behavior in response to the opponent. If
intersections of links occur, clustering algorithm should redefine the zones and a new
topological graph should be built.

5. Discovering of Tactical Behaviour Patterns

The process to discover tactical behavior patterns is illustrated in Figure 9. The following six
steps describe such process:

Fig. 9. The steps to discover the tactical behavior patterns

Step 1.Read logfile. Input data mainly related with players and ball positions;

Step 2.Extraction of similar paths. A set of ball’s paths occurring under similar contexts are
extracted. The extracted paths in Figure9 shows paths starting from the middle zone of the
field and then distributed either to the right or to the left side until ball reach a zone close to
the goal;

Step 3.First Freeman codification. The set of extracted paths are coded to be represented by
a sequence of orientations using a Freeman codification (Freeman, 1973) which is composed
of eight orientations.

Step 4.Second Freeman codification. The sequence of step 3 is recoded to obtain a more
abstract code. Let A,B,...,H be the new abstract segments where each one represents a
freeman code sequence with the same orientation, such that, A represents the sequence of
0’s, B represents the sequence of 1’s, and so on. Thus, a path coded as 7-7-7-1-1-1 can be
represented by the code HB;

Step 5.Identification of most frequent sub-sequences. A method based on a generalization of
a tree is applied to discover the general behavior patterns representing the paths of tactical
plays. For instance, let’s take two paths: BAH and ABA. Let’s suppose that the trie is empty.
It will first insert BAH into it. It will then insert the two remaining suffixes of BAH: {AH, H}.
Next, it will then insert the next path and its suffixes: {ABA, BA, A}, into the trie. The most
common single sub-sequence is A, the most common two subsequences is BA.

Finally, the players and zones are associated to the generalized paths. The topological
structures used to track formations have been a very good support to determine the players
participating in tactical plays, as well as the zones through which the plays have taken place.
Thanks to the topological graph, we are able to know at each instant of the game the players
and their relations participating in a play.

6. Experimental Results

In this section, important experimental results are analyzed. They are derived from two
teams: The TsinghuAeolus soccer team, who won the Simulation RoboCup Championship
in 2002. It is presented an analysis of the match between TsinguAeolus vs. Everest; and
theWrightEagle team, who won the second place in the same competition that held in 2007.
The model has been proven in nine matches, but for the relevance of the teams, we present
the analysis of results of two matches, one for the TsinguAeolus and one for the
WrightEagle. Figure 10 shows a sequence simulation cycles that represent the structures
involving the soccer-agents in a path of a tactical play. Because of the lack of space it is
shown some of the sub-graphs that compose the total sequence of sub-graphs representing
the path (in fact, there are approximately 50 sub-graphs for this tactical play). As can be
seen, the shadowed sub-graphs contain the soccer agents involved in the tactical plays. They
are in this case: the middle center, the right middle, the right forward, the center forward
and the left forward.

Fig. 10. Sequence of sub-graphs representing a tactical play incorporating agents and field zones

Autonomous	Agents60

As first step, the paths of the ball were extracted to be analyzed and coded by the code of
Freeman. In this way the set of paths can be compared numerically by measuring the
similarity between them. Another advantage of this codification is that we can have an idea
about how long the paths are. However, what is interesting in this analysis is not exactly
how long a path is, but, from the point of view of behavior, the form adopted by the path
and obviously the properties associated with the intention or purpose of it, in this case to get
close to a position of shooting to the goal. Due to these reasons, it is proposed in this work a
more abstract representation. Then the paths coded by the code of Freeman have been
recoded to obtain a more abstract code. The paths represented by abstract codes have
facilitated the application of the model to discover behavior patterns related with tactical
plays. It is important to point out that similar paths are not necessary those to end in a goal,
but those that assume a similar behavior from the start of the path to the final objective.
Figure 11 illustrates two shapes of generalized paths of tactical behaviors played through
the right and left side of the terrain. These generalized paths correspond to the
TsinghuAeolus team.

Fig. 11. Generalized paths of tactical behaviors: a) Attacks by right side and b) Attacks by
left side

For the case of the WrightEagle team, they played in the right side, Figure 12 shows the
extracted paths that get close to the opposite goal and Figure 13 shows two shapes of
discovered generalized paths. Based on the results obtained, it is observed that the model to
obtain the paths representing the tactical plays do not depend on the analyzed team. The
topological structures used to track formations have been a very good support to determine
the players participating in tactical plays, as well as the zones through which the plays have
taken place.

Fig. 12. Extracted paths that get close to the opposite goal. The team is attacking from left to
right side.

Fig. 13. Two shapes of generalized paths of tactical behaviors

7. Conclusions

This chapter has been focused on the analysis of relevant aspects related with interaction
and behavior models of cooperative multi-agent systems participating in a task. Our main
interest in these aspects concerns the models of tracking of multi-agent behaviors. Along
with the concept of tracking and behaviors, the concepts of coordination, prediction and
opponent models have been revised in order to have a general panorama around of this
important area in multi-agent systems applied to soccer agent robotics.

Behavioral aspects of cooperative agents may give us precious information about
individual, relational and functional roles that the agents assume during the different steps
of a task. The discovery of tactical plays and the recognition of formations supporting
strategies of team represent relevant information to implement counter strategies or tactics
to reduce the performance of the opposite team or, in the best of cases, to beat it.
Nevertheless, the dynamic nature of soccer matches along with the multiple interactions
between players difficult enormously the task of discovery. The model based on topological
graphs has contributed importantly to manage the difficulties due to the dynamic nature of
the soccer game. It can facilitate the tracking of formations. In addition, it provided the
algorithm of discovery tactical plays with important information concerning the players
participating in such plays.

An original idea described in this chapter is related with the double codification of the
paths, which has facilitated the interpretation of paths to implement the algorithm described
in section 4.3. The discovered paths can be considered as generalized because they were
obtained from a set of paths by applying the generalization algorithm described in section
4.3. This chapter dealt with offensive actions to be modeled as an opponent model.
However, a richer spectrum of team behaviors should take into account also defensive
strategies and tactics, which is an important line of research.

8. References

Nair, R.; Tambe, M.; Marsella S.; Raines, T. (2004). Automated assistants for analyzing team
behaviors, Journal of Autonomous Agents and Multi-Agent Systems, 8(1).

Ramos, F. & Ayanegui, H. (2008a): Discovering Tactical Behavior Patterns Supported by
Topological Structures in Soccer-Agent Domains. In Proceedings of the 7th
International Joint Conference on Autonomous Agents and Multi-agent Systems,
Padgham, Parkes, Muller and Parson (eds.), May 12-16, Estoril, Portugal, pp. 1421-
1424.

Tracking	behaviours	of	cooperative	robots	within	multi-agent	domains 61

As first step, the paths of the ball were extracted to be analyzed and coded by the code of
Freeman. In this way the set of paths can be compared numerically by measuring the
similarity between them. Another advantage of this codification is that we can have an idea
about how long the paths are. However, what is interesting in this analysis is not exactly
how long a path is, but, from the point of view of behavior, the form adopted by the path
and obviously the properties associated with the intention or purpose of it, in this case to get
close to a position of shooting to the goal. Due to these reasons, it is proposed in this work a
more abstract representation. Then the paths coded by the code of Freeman have been
recoded to obtain a more abstract code. The paths represented by abstract codes have
facilitated the application of the model to discover behavior patterns related with tactical
plays. It is important to point out that similar paths are not necessary those to end in a goal,
but those that assume a similar behavior from the start of the path to the final objective.
Figure 11 illustrates two shapes of generalized paths of tactical behaviors played through
the right and left side of the terrain. These generalized paths correspond to the
TsinghuAeolus team.

Fig. 11. Generalized paths of tactical behaviors: a) Attacks by right side and b) Attacks by
left side

For the case of the WrightEagle team, they played in the right side, Figure 12 shows the
extracted paths that get close to the opposite goal and Figure 13 shows two shapes of
discovered generalized paths. Based on the results obtained, it is observed that the model to
obtain the paths representing the tactical plays do not depend on the analyzed team. The
topological structures used to track formations have been a very good support to determine
the players participating in tactical plays, as well as the zones through which the plays have
taken place.

Fig. 12. Extracted paths that get close to the opposite goal. The team is attacking from left to
right side.

Fig. 13. Two shapes of generalized paths of tactical behaviors

7. Conclusions

This chapter has been focused on the analysis of relevant aspects related with interaction
and behavior models of cooperative multi-agent systems participating in a task. Our main
interest in these aspects concerns the models of tracking of multi-agent behaviors. Along
with the concept of tracking and behaviors, the concepts of coordination, prediction and
opponent models have been revised in order to have a general panorama around of this
important area in multi-agent systems applied to soccer agent robotics.

Behavioral aspects of cooperative agents may give us precious information about
individual, relational and functional roles that the agents assume during the different steps
of a task. The discovery of tactical plays and the recognition of formations supporting
strategies of team represent relevant information to implement counter strategies or tactics
to reduce the performance of the opposite team or, in the best of cases, to beat it.
Nevertheless, the dynamic nature of soccer matches along with the multiple interactions
between players difficult enormously the task of discovery. The model based on topological
graphs has contributed importantly to manage the difficulties due to the dynamic nature of
the soccer game. It can facilitate the tracking of formations. In addition, it provided the
algorithm of discovery tactical plays with important information concerning the players
participating in such plays.

An original idea described in this chapter is related with the double codification of the
paths, which has facilitated the interpretation of paths to implement the algorithm described
in section 4.3. The discovered paths can be considered as generalized because they were
obtained from a set of paths by applying the generalization algorithm described in section
4.3. This chapter dealt with offensive actions to be modeled as an opponent model.
However, a richer spectrum of team behaviors should take into account also defensive
strategies and tactics, which is an important line of research.

8. References

Nair, R.; Tambe, M.; Marsella S.; Raines, T. (2004). Automated assistants for analyzing team
behaviors, Journal of Autonomous Agents and Multi-Agent Systems, 8(1).

Ramos, F. & Ayanegui, H. (2008a): Discovering Tactical Behavior Patterns Supported by
Topological Structures in Soccer-Agent Domains. In Proceedings of the 7th
International Joint Conference on Autonomous Agents and Multi-agent Systems,
Padgham, Parkes, Muller and Parson (eds.), May 12-16, Estoril, Portugal, pp. 1421-
1424.

Autonomous	Agents62

Kuhlmann, G.; Stone, P.; Lallinger, J. (2005). The ut austin villa 2003 champion simulator
coach: A machine learning approach. In RoboCup 2004, Nardi, D., Riedmiller, M.,
Sammut, C.,Santos-Victor, J. (eds.). LNCS (LNAI), vol. 3276, pp. 636–644. Springer,
Heidelberg.

Lattner, A., D.; Miene, A.; Visser, U. & Herzog, O. (2005). Sequential pattern mining for
situation and behavior prediction in simulated robotic soccer. In RoboCup 2005, A.
Bredenfeld, A. Jacoff editors, volume 4020 of LNCS, pages 118–129. Springer,
Heidelberg.

Noda, I. & Frank, I. (1998). Investigating the complex with virtual soccer. In Heudin, J.-C.,
editor, Virtual Worlds, volume 1434 of Lecture Notes in Computer Science, pages
241–253. Springer.

Kitano, H.; Tambe, M.; Stone, P. & Veloso, M. (1997). The robocup synthetic agent challenge
97. In Kitano, H., editor, RoboCup 1997, volume 1395 of LNCS, pages 62–73.
Springer.

Riley, P.; Veloso, M. & Kaminka, G. (2002). An empírical study of coaching. On proceedings
of Distribuited Autonomous Robotic Systems 6, Spring-Verlag.

Bezek, A.; Gams, M. & Bratko, I. (2006). Multi-agent strategic modeling in a robotic soccer
domain. In Nakashima, H., Wellman, M.P., Weiss, G., Stone, P. (eds.) Autonomous
Agents and Multi-Agent Systems, pp. 457–464. ACM Press, New York

Visser, U.; Drcker, C.; Hbner, S.; Schmidt, E. & Weland, H.-G. (2001). Recognizing
formations in opponent teams. In Stone, P., Balch, T.R., Kraetzschmar, G.K. (eds.)
RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 391–396. Springer, Heidelberg

MacQueen, J.B. (1967). Some Methods for classification and Analysis of Multivariate
Observations. In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and
Probability, Berkeley, vol. 1, pp. 281–29. University of California Press (1967).

Berge, C. (1983). Graphes. Guathier-Villars.
Freeman, H. (1973). On the encoding of arbitrary geometric configurations. IRE Transactions.
Durfee, E. H,. Lesser, V.R. and Corkill, D.D. (1989b). Trends in cooperative distributed

problem solveing. IEEE Trnsactions on Knowledge and Data Engineering, 1(1), 63-83.
Wooldrige, M. & Jennings, N.R. (1994). Formalizing the cooperative problem solving

process. In Proceedings of the 13th International Workshop on Distributed Artificial
Intelligence (IWDAI-94), Lake Quinalt, WA, pp. 403-417. Reprinted in Huhns and
Singh (1998).

Adler, M.R. et al. (1989). Conflict resolution strategies for non hierarchical distributed
agents. In Distributed Artificial Intelligence (eds. L. Gasser and M. Huhns), Volume
2, pp. 139-162. Pitman, London and Morgan Kaufmann, San Mateo, Ca.

Galliers, J.R. (1988b). A theoretical frameqork for computer models of cooperative dialogue,
acknowledging multi-agent conflict. PhD thesis, The Open University, UK

Galliers, J.R. (1990). The positive role of conflict in cooperative multi-agent systems. In
Descentralized A.I. Proceedings of the First European Workshop Modelling
Autonomous Agents in a Multi-Agent World (MAAMAW-89) (eds. Y. Demazeau
and J.P. Miller), pp-33-48. Elsevier, Amsterdam.

Klein, M. & Baskin, A.B. (1991). A computational model for conflict resolution in cooperative
design systems. In CKBS-90. Proceedings of the International Working Conference
on Cooperative Knowledge Based Systems (ed. S.M. Deen), pp. 201-222. Springer,
Berlin.

Lander, S., Lesser, V.R. & Connel, M.E. (1991). Conflict resolution strategies for cooperating
expert agents. In CKBS-90. Proceedings of the International Working Conference on
Cooperating Knowledge Based Systems (ed. S.M. Deen), pp. 183-200. Springer,
Berlin.

Ephrati, E. & Rosenschein, J.S. (1993). Multi-agent planning as a dynamic search for social
consensus. Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI-93). Chambéry, France, pp. 423-429.

Rosenschein, J.S. and Zlotkin, G. (1994). Rules of Encounter: Designing Conventions for
Automated Negotiation among Computers. MIT Press, Cambridge, MA.

Horling, B. & Lesser, V. (2004). A survey of multi-agent organizational paradigms.
Knowledge Engineering Review, Vol. 19, Issue 4, pp. 281-316., ISSN: 0269-8889.
Cambridge University Press, New York, NY, USA.

Chernova, S. & Veloso, M. (2008). Teaching multi-robot coordination using demonstration of
communication and state sharing. In Proceedings of the 7th international Joint
Conference on Autonomous Agents and Multi-agent Systems - Volume 3 (Estoril,
Portugal). International Conference on Autonomous Agents. International
Foundation for Autonomous Agents and Multi-agent Systems, Richland, SC, 1183-
1186.

Jansen, R. & Sturtevant, N. 2008. A new approach to cooperative pathfinding. In Proceedings
of the 7th international Joint Conference on Autonomous Agents and Multi-agent Systems
- Volume 3 (Estoril, Portugal). International Conference on Autonomous Agents.
International Foundation for Autonomous Agents and Multi-agent Systems,
Richland, SC, 1401-1404.

Candea, C.; Hu, H.; Iocchi, L.; Nardi, D. & Piaggio, M. (2001). Coordination in Multi-Agent
RoboCup Teams. In Robotics and Autonomous Systems , Vol. 36 (2001) , p. 67-86.

Aler, R.; Valls, J.; Camacho, D. & Lopez, A. (2009). Programming Robosoccer agents by
modeling human behavior. Expert Systems with Applications, Volume 36, Issue 2,
Part 1, pp. 1850-1859.

Lin, L., Seo, Y., Gen, M., and Cheng, R. (2009). Unusual human behavior recognition using
evolutionary technique. Computers & Industrial Engineering, Volume 56, Issue 3, April
2009, pp. 1137-1153.

Balch, T.; Khan, Z. & Veloso, M. (2001). Automatically Tracking and Analyzing the Behavior
of Live Insect Colonies. AGENTS’01, May 28-June 1, 2001, Montreal, Quebec, Canada.

Luotsinen, L. J. & Bölöni, L. (2008). Role-based teamwork activity recognition in
observations of embodied agent actions. In Proceedings of the 7th international Joint
Conference on Autonomous Agents and Multi-agent Systems - Volume 2 (Estoril,
Portugal, May 12 - 16, 2008). International Conference on Autonomous Agents.
International Foundation for Autonomous Agents and Multi-agent Systems,
Richland, SC, 567-574.

Hindriks, K. & Tykhonov, D. (2008). Opponent modelling in automated multi-issue
negotiation using Bayesian learning. In Proceedings of the 7th international Joint
Conference on Autonomous Agents and Multi-agent Systems - Volume 1 (Estoril,
Portugal, May 12 - 16, 2008). International Conference on Autonomous Agents.
International Foundation for Autonomous Agents and Multi-agent Systems,
Richland, SC, 331-338.

Tracking	behaviours	of	cooperative	robots	within	multi-agent	domains 63

Kuhlmann, G.; Stone, P.; Lallinger, J. (2005). The ut austin villa 2003 champion simulator
coach: A machine learning approach. In RoboCup 2004, Nardi, D., Riedmiller, M.,
Sammut, C.,Santos-Victor, J. (eds.). LNCS (LNAI), vol. 3276, pp. 636–644. Springer,
Heidelberg.

Lattner, A., D.; Miene, A.; Visser, U. & Herzog, O. (2005). Sequential pattern mining for
situation and behavior prediction in simulated robotic soccer. In RoboCup 2005, A.
Bredenfeld, A. Jacoff editors, volume 4020 of LNCS, pages 118–129. Springer,
Heidelberg.

Noda, I. & Frank, I. (1998). Investigating the complex with virtual soccer. In Heudin, J.-C.,
editor, Virtual Worlds, volume 1434 of Lecture Notes in Computer Science, pages
241–253. Springer.

Kitano, H.; Tambe, M.; Stone, P. & Veloso, M. (1997). The robocup synthetic agent challenge
97. In Kitano, H., editor, RoboCup 1997, volume 1395 of LNCS, pages 62–73.
Springer.

Riley, P.; Veloso, M. & Kaminka, G. (2002). An empírical study of coaching. On proceedings
of Distribuited Autonomous Robotic Systems 6, Spring-Verlag.

Bezek, A.; Gams, M. & Bratko, I. (2006). Multi-agent strategic modeling in a robotic soccer
domain. In Nakashima, H., Wellman, M.P., Weiss, G., Stone, P. (eds.) Autonomous
Agents and Multi-Agent Systems, pp. 457–464. ACM Press, New York

Visser, U.; Drcker, C.; Hbner, S.; Schmidt, E. & Weland, H.-G. (2001). Recognizing
formations in opponent teams. In Stone, P., Balch, T.R., Kraetzschmar, G.K. (eds.)
RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 391–396. Springer, Heidelberg

MacQueen, J.B. (1967). Some Methods for classification and Analysis of Multivariate
Observations. In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and
Probability, Berkeley, vol. 1, pp. 281–29. University of California Press (1967).

Berge, C. (1983). Graphes. Guathier-Villars.
Freeman, H. (1973). On the encoding of arbitrary geometric configurations. IRE Transactions.
Durfee, E. H,. Lesser, V.R. and Corkill, D.D. (1989b). Trends in cooperative distributed

problem solveing. IEEE Trnsactions on Knowledge and Data Engineering, 1(1), 63-83.
Wooldrige, M. & Jennings, N.R. (1994). Formalizing the cooperative problem solving

process. In Proceedings of the 13th International Workshop on Distributed Artificial
Intelligence (IWDAI-94), Lake Quinalt, WA, pp. 403-417. Reprinted in Huhns and
Singh (1998).

Adler, M.R. et al. (1989). Conflict resolution strategies for non hierarchical distributed
agents. In Distributed Artificial Intelligence (eds. L. Gasser and M. Huhns), Volume
2, pp. 139-162. Pitman, London and Morgan Kaufmann, San Mateo, Ca.

Galliers, J.R. (1988b). A theoretical frameqork for computer models of cooperative dialogue,
acknowledging multi-agent conflict. PhD thesis, The Open University, UK

Galliers, J.R. (1990). The positive role of conflict in cooperative multi-agent systems. In
Descentralized A.I. Proceedings of the First European Workshop Modelling
Autonomous Agents in a Multi-Agent World (MAAMAW-89) (eds. Y. Demazeau
and J.P. Miller), pp-33-48. Elsevier, Amsterdam.

Klein, M. & Baskin, A.B. (1991). A computational model for conflict resolution in cooperative
design systems. In CKBS-90. Proceedings of the International Working Conference
on Cooperative Knowledge Based Systems (ed. S.M. Deen), pp. 201-222. Springer,
Berlin.

Lander, S., Lesser, V.R. & Connel, M.E. (1991). Conflict resolution strategies for cooperating
expert agents. In CKBS-90. Proceedings of the International Working Conference on
Cooperating Knowledge Based Systems (ed. S.M. Deen), pp. 183-200. Springer,
Berlin.

Ephrati, E. & Rosenschein, J.S. (1993). Multi-agent planning as a dynamic search for social
consensus. Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI-93). Chambéry, France, pp. 423-429.

Rosenschein, J.S. and Zlotkin, G. (1994). Rules of Encounter: Designing Conventions for
Automated Negotiation among Computers. MIT Press, Cambridge, MA.

Horling, B. & Lesser, V. (2004). A survey of multi-agent organizational paradigms.
Knowledge Engineering Review, Vol. 19, Issue 4, pp. 281-316., ISSN: 0269-8889.
Cambridge University Press, New York, NY, USA.

Chernova, S. & Veloso, M. (2008). Teaching multi-robot coordination using demonstration of
communication and state sharing. In Proceedings of the 7th international Joint
Conference on Autonomous Agents and Multi-agent Systems - Volume 3 (Estoril,
Portugal). International Conference on Autonomous Agents. International
Foundation for Autonomous Agents and Multi-agent Systems, Richland, SC, 1183-
1186.

Jansen, R. & Sturtevant, N. 2008. A new approach to cooperative pathfinding. In Proceedings
of the 7th international Joint Conference on Autonomous Agents and Multi-agent Systems
- Volume 3 (Estoril, Portugal). International Conference on Autonomous Agents.
International Foundation for Autonomous Agents and Multi-agent Systems,
Richland, SC, 1401-1404.

Candea, C.; Hu, H.; Iocchi, L.; Nardi, D. & Piaggio, M. (2001). Coordination in Multi-Agent
RoboCup Teams. In Robotics and Autonomous Systems , Vol. 36 (2001) , p. 67-86.

Aler, R.; Valls, J.; Camacho, D. & Lopez, A. (2009). Programming Robosoccer agents by
modeling human behavior. Expert Systems with Applications, Volume 36, Issue 2,
Part 1, pp. 1850-1859.

Lin, L., Seo, Y., Gen, M., and Cheng, R. (2009). Unusual human behavior recognition using
evolutionary technique. Computers & Industrial Engineering, Volume 56, Issue 3, April
2009, pp. 1137-1153.

Balch, T.; Khan, Z. & Veloso, M. (2001). Automatically Tracking and Analyzing the Behavior
of Live Insect Colonies. AGENTS’01, May 28-June 1, 2001, Montreal, Quebec, Canada.

Luotsinen, L. J. & Bölöni, L. (2008). Role-based teamwork activity recognition in
observations of embodied agent actions. In Proceedings of the 7th international Joint
Conference on Autonomous Agents and Multi-agent Systems - Volume 2 (Estoril,
Portugal, May 12 - 16, 2008). International Conference on Autonomous Agents.
International Foundation for Autonomous Agents and Multi-agent Systems,
Richland, SC, 567-574.

Hindriks, K. & Tykhonov, D. (2008). Opponent modelling in automated multi-issue
negotiation using Bayesian learning. In Proceedings of the 7th international Joint
Conference on Autonomous Agents and Multi-agent Systems - Volume 1 (Estoril,
Portugal, May 12 - 16, 2008). International Conference on Autonomous Agents.
International Foundation for Autonomous Agents and Multi-agent Systems,
Richland, SC, 331-338.

Autonomous	Agents64

Mulder, F. & Voorbraak, F. (2003). A formal description of tactical plan recognition.
Information Fusion, Volume 4, Issue 1, March 2003, pp. 47-61.

Henniger & Madhavan. (2004). Robotics and Autonomous Systems, Volume 49, Issues 1-2, 30
November 2004, pp. 91-103.

Tambe, M. & Rosenbloom, P.S. (1996). Architectures for Agents that Track Other Agents in
Multi-agent Worlds, Intelligent Agents II, Springer Verlag Lecture Notes in Artificial
Intelligence, LNAI 1037.

Tambe, M.; Johnson, W. L.; Jones, R.; Koss, F.; Laird, J. E.; Ronsenbloom, P.S. & Schwamb, K.
(1995). Intelligent agents for interactive simulation environment. AI Magazine (16) 1,
Spring 1995.

Muñoz, R. (2008). A Bayesian plan-view map based approach for multiple-person detection
and tracking. Pattern Recognition, Volume 41, Issue 12, December 2008, Pages 3665-
3676.

Muñoz, R.; García, M. & Medina, R. (2008). Adaptive multi-modal stereo people tracking
without background modelling. Journal of Visual Communication and Image
Representation, Volume 19, Issue 2, February 2008, Pages 75-91.

Muñoz, R.; Aguirre, E.; García, M. (2007). People detection and tracking using stereo vision
and color. Image and Vision Computing, Volume 25, Issue 6, 1 June 2007, pp. 995-
1007.

Schwager, M.; Anderson, D. M.; Butler, Z. & Rus, D. (2007). Robust classification of animal
tracking data. Computers and Electronics in Agriculture, Volume 56, Issue 1, March
2007, pp. 46-59.

Noldus, L.; Spink, A. & Tegelenbosch, R. (2002). Computerised video tracking, movement
analysis and behavior recognition in insects. Computers and Electronics in
Agriculture, Volume 35, Issues 2-3, August 2002, pp. 201-227.

Ukita, N. & Matsuyama, T. (2005). Real-time cooperative multi-target tracking by
communicating active vision agents. Computer Vision and Image Understanding,
Volume 97, Issue 2, February 2005, pp. 137-179.

Xiao, F.; Wang, L.; Chen, J. & Gao, Y. (2009). Finite-time formation control for multi-agent
systems. Automatica, In Press, Corrected Proof, Available online 19 August 2009.

Porfiri, M.; Roberson, G. & Stilwell, D. (2007). Tracking and formation control of multiple
autonomous agents: A two-level consensus approach. Automatica, Volume 43, Issue
8, August 2007, pp. 1318-1328.

Ramos, F. & Ayanegui, H. (2008b). Discovering Behavior Patterns in Muti-agent Teams. In
Agent and Multi-Agent Systems: Technologies and Applications, Second KES
International Symposium, KES-AMSTA 2008, Incheon, Korea, March 26-28, 2008.
pp. 391-400.

Raines, T.; Tambe, M. & Marsella, S. (2000). Automated assistant to aid humans in
understanding team behaviors. In Agents-2000.

Sukthankar, G. & Sycara, K. (2006). Simultaneous team assignment and behavior recognition
from spatio-temporal agent traces. In Proceedings of 21st national conference on
artificial intelligence AAAI 2006.

Fischler, M. & Bolles, R. (1981). Random sample consensus: A paradigm for model fitting
with application to image analysis and automated cartography. Communications of
the ACM 24 (6).

Petri	Net	Robotic	Task	Plan	Representation:	Modelling,	Analysis	and	Execution 65

Petri	 Net	 Robotic	 Task	 Plan	 Representation:	Modelling,	 Analysis	 and	
Execution

Hugo	Costelha	and	Pedro	Lima

4

Petri Net Robotic Task Plan Representation:
Modelling, Analysis and Execution

Hugo Costelha
Institute for Systems and Robotics, Instituto Superior Técnico

Superior School of Technology and Management, Polytechnic Institute of Leiria
Portugal

Pedro Lima
Institute for Systems and Robotics, Instituto Superior Técnico

Portugal

1. Introduction

As the usage of robots in everyday tasks increases, there is a need to improve our knowledge
concerning the execution of those robotic tasks. Robotic task models are usually not based on
formal approaches but tailored to the task at hand. Applying discrete event system concepts to
model robotic tasks provides a systematic approach to modelling, analysis and design, scaling
up to realistic applications, and enabling analysis of formal properties, as well as design from
specifications.
Most of the work found on the literature concerning the design of robotic tasks using Dis-
crete Event Systems is based on Finite State Automata for code generation (Dominguez-Brito
et al., 2000), qualitative specifications (Kosecka et al., 1997), some quantitative specifications
(Espiau et al., 1995), modularisation (Kosecka et al., 1997) and even to model multi-robot sys-
tems (Damas & Lima, 2004). Work using Petri nets to design robotic tasks under temporal
requirements, focusing also on the generation of real-time, error-free code can be found in
(Montano et al., 2000). Petri net Plans were introduced in (Ziparo & Iocchi, 2006) for design
and execution of task plans. However, these do not close the loop, i.e., do not consider the
actual implications of the actions on the environment, focusing mostly on the design.
In this chapter we describe a Petri net based framework which allows a systematic approach
for modelling, analysis and execution of robotic tasks. This framework is divided in three
layers: task plan models, action models and environment models. The models range from the
robot decision-making algorithms (task plan models) to the environment dynamics, due to
physics and/or actions of other agents (environment models).
In the proposed models, Petri net places represent tasks, primitive actions and logic predicates
set by sensor readings. These logic predicates provide and abstraction of the world relevant
features. By composing these models, and applying analysis techniques, important a priori
information can be obtained regarding the properties of the task. The models are based on
Marked Ordinary Petri Nets and Generalised Stochastic Petri Nets (Murata, 1989), allowing

4

Autonomous	Agents66

for transitions to be immediate or stochastic, and leading to both the retrieval of logical proper-
ties, such as deadlocks and resource conservation, and (probabilistic) performance properties,
such as probability or average time to reach a desired state.
Given the action and environment models, different task plans can be quickly evaluated using
the analysis techniques, allowing for a priori quality/performance based decisions. Further-
more, due to the introduced abstractions and inherent Petri net restrictions, the state space is
reduced.
By introducing comunication models we further extend the framework to model cooperative
robotic tasks, namely those involving the coordination of two or more robots, which require
the exchange of synchronisation messages, either using explicit (e.g., wireless) or implicit (e.g.,
vision-based observation of teammates) communication. Different communication models al-
low the analysis of different scenarios, such as perfect communication, delayed communica-
tion or absence of communication.
Extensive tests were done using a robotic soccer scenario under full observability.

2. Petri Nets

Petri nets (Petri, 1966) are a widely used formalism for modelling Discrete Event Dynamic
Systems (DEDS). They allow modelling important aspects such as synchronisation, resources
availability, concurrency, parallelism and decision making, providing at the same time a high
degree of modularity, making them suitable to model robotic tasks.
Petri nets are preferred to Finite State Automata (FSA) due to their larger modelling power
and because one can model the same state space with a smaller graph. Moreover, although
composition of Petri nets usually leads to an exponential growth in the state space (as for
FSA), graphically the growth is linear in the size of the composed graphs given that the state
is distributed. This makes the design process simpler for the task designer, and helps manag-
ing the display of the tasks both for monitoring and designing purposes. Moreover, we use
Marked Ordinary Petri Nets (MOPN) and Generalised Stochastic Petri Nets (GSPN) (Murata,
1989), allowing the retrieval of logical and (probabilistic) performance properties.
Modularity in Petri nets is achieved since each resource can be modeled separately and then
composed with others. Although composition operators exist for FSA, Petri nets can model
subsystems with input and output places, so that they can be connected as in a circuit.

2.1 Marked Ordinary Petri Nets
The simplest models we use are Marked Ordinary Petri nets:

Definition 2.1. A marked ordinary Petri net is a five-tuple PN = 〈P, T, I, O,M0〉, where:

• P = {p1, p2, . . . , pn} is a finite, not empty, set of places;

• T = {t1, t2, . . . , tm} is a finite set of transitions;

• I = P × T represents the arc connections from places to transitions, such that ilj = 1 if, and
only if, there is an arc from pl to tj, and ilj = 0 otherwise;

• O = T × P represent the arc connections from transition to places, such that olj = 1 if, and
only if, there is an arc from tl to pj, and olj = 0 otherwise;

• M(j) = [m1(j), . . . , mn(j)] is the state of the net, and represents the marking of the net at time
j, where mn(j) = q means there are q tokens in place pn at time instant j. M(0) is the initial
marking of the net.

Fig. 1. A simple Petri net.

A simple MOPN is depicted in Fig. 1. Basically we have two types of nodes: places, rep-
resented by circles, and transitions, represented by filled rectangles. The places can contain
any number of tokens, represented by the number of dots (or a number) inside the place. For
instance, in the Petri net shown in Fig. 1 place p1 and place p3 both have one token, while
place p2 has zero tokens.
The state of the net is given by the marking of the net, which in turn is given by the number
of tokens in the places. For instance, the initial marking of the Petri net from Fig. 1 is given by
M0 = [1, 0, 1].
In this class of Petri nets, all the transitions are immediate (have zero firing time), i.e., once they
are enabled and fired, the new marking is instantly reached.
When referring to input or output nodes of a particular node, we are referring to the nodes
connected to or from that node. For instance, transition t3 has places p2 and p3 as its input
places, while it has only one output place, p1.

2.2 Generalised Stochastic Petri Nets
MOPNs are suited for qualitative analysis, but not for performance analysis. For this purpose,
one uses generalised stochastic Petri nets.

Definition 2.2. A standard GSPN is an eight-tuple PN = 〈P, T, I, O,M0, R, S〉, where:

• P, T, I, O,M0 are as defined in 2.1;

• T is partitioned in two sets: TI of immediate transitions and TE of exponential transitions;

• R is a function from the set of transitions TE to the set of real numbers, R
(

tEj

)
= µj, where µj

is called the firing rate of tEj ;

• S is a set of random switches, which associate probability distributions to subsets of conflicting
immediate transitions.

Stochastic (exponential) transitions, once enabled, fire only when an exponentially distributed
time dj has elapsed. This definition of GSPNs includes also the possibility of associating a
probability distribution to conflicting immediate transitions, by the use of the random switches.
These random switches can be static (invariant to the marking of the net) or dynamic (depen-
dent on the marking of the net).
We use a particular implementation of random switches, by associating weights to the
immediate transitions, as described in Definition 2.3.

Definition 2.3. A GSPN is an eight-tuple PN = 〈P, T, I, O,M0, R, W〉, where:

Petri	Net	Robotic	Task	Plan	Representation:	Modelling,	Analysis	and	Execution 67

for transitions to be immediate or stochastic, and leading to both the retrieval of logical proper-
ties, such as deadlocks and resource conservation, and (probabilistic) performance properties,
such as probability or average time to reach a desired state.
Given the action and environment models, different task plans can be quickly evaluated using
the analysis techniques, allowing for a priori quality/performance based decisions. Further-
more, due to the introduced abstractions and inherent Petri net restrictions, the state space is
reduced.
By introducing comunication models we further extend the framework to model cooperative
robotic tasks, namely those involving the coordination of two or more robots, which require
the exchange of synchronisation messages, either using explicit (e.g., wireless) or implicit (e.g.,
vision-based observation of teammates) communication. Different communication models al-
low the analysis of different scenarios, such as perfect communication, delayed communica-
tion or absence of communication.
Extensive tests were done using a robotic soccer scenario under full observability.

2. Petri Nets

Petri nets (Petri, 1966) are a widely used formalism for modelling Discrete Event Dynamic
Systems (DEDS). They allow modelling important aspects such as synchronisation, resources
availability, concurrency, parallelism and decision making, providing at the same time a high
degree of modularity, making them suitable to model robotic tasks.
Petri nets are preferred to Finite State Automata (FSA) due to their larger modelling power
and because one can model the same state space with a smaller graph. Moreover, although
composition of Petri nets usually leads to an exponential growth in the state space (as for
FSA), graphically the growth is linear in the size of the composed graphs given that the state
is distributed. This makes the design process simpler for the task designer, and helps manag-
ing the display of the tasks both for monitoring and designing purposes. Moreover, we use
Marked Ordinary Petri Nets (MOPN) and Generalised Stochastic Petri Nets (GSPN) (Murata,
1989), allowing the retrieval of logical and (probabilistic) performance properties.
Modularity in Petri nets is achieved since each resource can be modeled separately and then
composed with others. Although composition operators exist for FSA, Petri nets can model
subsystems with input and output places, so that they can be connected as in a circuit.

2.1 Marked Ordinary Petri Nets
The simplest models we use are Marked Ordinary Petri nets:

Definition 2.1. A marked ordinary Petri net is a five-tuple PN = 〈P, T, I, O,M0〉, where:

• P = {p1, p2, . . . , pn} is a finite, not empty, set of places;

• T = {t1, t2, . . . , tm} is a finite set of transitions;

• I = P × T represents the arc connections from places to transitions, such that ilj = 1 if, and
only if, there is an arc from pl to tj, and ilj = 0 otherwise;

• O = T × P represent the arc connections from transition to places, such that olj = 1 if, and
only if, there is an arc from tl to pj, and olj = 0 otherwise;

• M(j) = [m1(j), . . . , mn(j)] is the state of the net, and represents the marking of the net at time
j, where mn(j) = q means there are q tokens in place pn at time instant j. M(0) is the initial
marking of the net.

Fig. 1. A simple Petri net.

A simple MOPN is depicted in Fig. 1. Basically we have two types of nodes: places, rep-
resented by circles, and transitions, represented by filled rectangles. The places can contain
any number of tokens, represented by the number of dots (or a number) inside the place. For
instance, in the Petri net shown in Fig. 1 place p1 and place p3 both have one token, while
place p2 has zero tokens.
The state of the net is given by the marking of the net, which in turn is given by the number
of tokens in the places. For instance, the initial marking of the Petri net from Fig. 1 is given by
M0 = [1, 0, 1].
In this class of Petri nets, all the transitions are immediate (have zero firing time), i.e., once they
are enabled and fired, the new marking is instantly reached.
When referring to input or output nodes of a particular node, we are referring to the nodes
connected to or from that node. For instance, transition t3 has places p2 and p3 as its input
places, while it has only one output place, p1.

2.2 Generalised Stochastic Petri Nets
MOPNs are suited for qualitative analysis, but not for performance analysis. For this purpose,
one uses generalised stochastic Petri nets.

Definition 2.2. A standard GSPN is an eight-tuple PN = 〈P, T, I, O,M0, R, S〉, where:

• P, T, I, O,M0 are as defined in 2.1;

• T is partitioned in two sets: TI of immediate transitions and TE of exponential transitions;

• R is a function from the set of transitions TE to the set of real numbers, R
(

tEj

)
= µj, where µj

is called the firing rate of tEj ;

• S is a set of random switches, which associate probability distributions to subsets of conflicting
immediate transitions.

Stochastic (exponential) transitions, once enabled, fire only when an exponentially distributed
time dj has elapsed. This definition of GSPNs includes also the possibility of associating a
probability distribution to conflicting immediate transitions, by the use of the random switches.
These random switches can be static (invariant to the marking of the net) or dynamic (depen-
dent on the marking of the net).
We use a particular implementation of random switches, by associating weights to the
immediate transitions, as described in Definition 2.3.

Definition 2.3. A GSPN is an eight-tuple PN = 〈P, T, I, O,M0, R, W〉, where:

Autonomous	Agents68

Fig. 2. Generalised stochastic Petri net.

• P, T, I, O,M0, R are as defined in 2.2;

• W is a function from the immediate transitions set TI to a set of real numbers, W
(

tIj

)
= wj,

where wj is the weight associated with immediate transition tIj ;

• For any given marking, the probability of firing an enabled transition ti is equal to wi/W , where
W is the sum of the weights of all enabled transitions for the given marking.

Consider the GSPN model depicted in Fig. 2. In this example, tE1 is an exponential timed
transition (drawn with a unfilled rectangle), while tI1 , tI2 and tI3 are immediate transitions
with associated weights. Initially t1 is enabled, since p1 has tokens, and will fire after an
exponentially distributed time with rate µ1 has elapsed. The token flows from p1 to p2 and,
since tI1 is an immediate transition, it will immediately flow from p2 to p3, reaching marking
M3 = [0, 0, 1]. In this marking tI2 and tI3 form a set of conflicting transitions, whereas only
one will fire, according to the following probabilities:

Pf (tI2) =
w2

w2 + w3
Pf (tI3) =

w3
w2 + w3

If tI3 is fired, the marking remains the same, if tI2 is fired, the net returns to the initial marking.
The GSPN marking is a semi-Markov process with a discrete state space given by the reacha-
bility graph of the net for an initial marking (Murata, 1989; Viswanadham & Narahari, 1992).
A Markov chain can be obtained from the marking process, and the transition probability
matrix computed by using the firing rates of the exponential timed transitions and the prob-
abilities associated with the random switches. This enables the use of tools already available
to analyse Markov chains directly from the GSPN, instead of relying on, e.g., Monte Carlo
simulation.

2.3 Additional Specifications
In our framework, we embody the Petri net models with some additional building blocks,
namely macro places, and make use of the place labels to distinguish between different types
of places, such as: action macro places, predicate places and regular (or memory) places. These
different types of places do not introduce any change regarding the execution of the Petri
nets, but are key in the analysis process explained later.
Regular (or memory) places are normal Petri net places, without any special properties. The
remaining types of places are described in the following sections.

Fig. 3. Representation of predicate by a set of places.

2.3.1 Predicate Places
Predicate places are used to represent logic predicates, having always one or zero tokens.
Although Predicate Petri nets exist in the literature (Röck & Kresman, 2006), the tools available
to work with this type of Petri nets are very scarce. As such, we use regular places to represent
predicates, as explained next.

Definition 2.4. A predicate place p is a place associated with the predicate P, described by p |= P,
such that:

• ∀j, Pj = true ⇔ mp(j) = 1

• ∀j, Pj = f alse ⇔ mp(j) = 0,

where Pj is the predicate P at time step j.

Basically, a place representing a predicate has one token if that predicate is true and zero
tokens otherwise.

Definition 2.5. A Petri net model of a predicate is a MOPN where:

• P = {¬p, p}, where and ¬p and p are predicate places associated with predicates ¬P() and P()
respectively;

• I = ∅;

• O = ∅;

• ∀jMj = [0, 1] ∨ [1, 0].

Although we could achieve the same results by using just one place for representing a predi-
cate, that would lead to the use of inhibitor arcs. Once again we rather maintain the use of the
base Petri nets, with minimal extensions added, so as to be able to use a larger set of available
Petri tools. Furthemore, although it increases the number of places, it does not increase the
state space, and provides a cleaner interface to the user.
As an example, a Petri net model representing the predicate SeeBall is depicted in Figure
3. Note the usage of the predicate. (or, alternatively, p.) prefix to denote that the place is a
predicate place, and the NOT_ prefix to denote the negated predicate.

2.3.2 Macro Places
Macros, albeit not always using the same definition, are used to create hierarchical Petri nets
(Bernardinello & Cindio, 1992), leading to a higher degree of modularity. The use of macro
places allows the drawing of entire Petri net models from lower layers has single places in
higher layers, providing for cleaner and reusable models.
Places associated with macros will also have a particular prefix in the place label. Furthermore,
since macro places represent entire Petri nets, we need to have expansion algorithms when
obtaining one single Petri net without macro places. These details will be given later in Section
4.1.

Petri	Net	Robotic	Task	Plan	Representation:	Modelling,	Analysis	and	Execution 69

Fig. 2. Generalised stochastic Petri net.

• P, T, I, O,M0, R are as defined in 2.2;

• W is a function from the immediate transitions set TI to a set of real numbers, W
(

tIj

)
= wj,

where wj is the weight associated with immediate transition tIj ;

• For any given marking, the probability of firing an enabled transition ti is equal to wi/W , where
W is the sum of the weights of all enabled transitions for the given marking.

Consider the GSPN model depicted in Fig. 2. In this example, tE1 is an exponential timed
transition (drawn with a unfilled rectangle), while tI1 , tI2 and tI3 are immediate transitions
with associated weights. Initially t1 is enabled, since p1 has tokens, and will fire after an
exponentially distributed time with rate µ1 has elapsed. The token flows from p1 to p2 and,
since tI1 is an immediate transition, it will immediately flow from p2 to p3, reaching marking
M3 = [0, 0, 1]. In this marking tI2 and tI3 form a set of conflicting transitions, whereas only
one will fire, according to the following probabilities:

Pf (tI2) =
w2

w2 + w3
Pf (tI3) =

w3
w2 + w3

If tI3 is fired, the marking remains the same, if tI2 is fired, the net returns to the initial marking.
The GSPN marking is a semi-Markov process with a discrete state space given by the reacha-
bility graph of the net for an initial marking (Murata, 1989; Viswanadham & Narahari, 1992).
A Markov chain can be obtained from the marking process, and the transition probability
matrix computed by using the firing rates of the exponential timed transitions and the prob-
abilities associated with the random switches. This enables the use of tools already available
to analyse Markov chains directly from the GSPN, instead of relying on, e.g., Monte Carlo
simulation.

2.3 Additional Specifications
In our framework, we embody the Petri net models with some additional building blocks,
namely macro places, and make use of the place labels to distinguish between different types
of places, such as: action macro places, predicate places and regular (or memory) places. These
different types of places do not introduce any change regarding the execution of the Petri
nets, but are key in the analysis process explained later.
Regular (or memory) places are normal Petri net places, without any special properties. The
remaining types of places are described in the following sections.

Fig. 3. Representation of predicate by a set of places.

2.3.1 Predicate Places
Predicate places are used to represent logic predicates, having always one or zero tokens.
Although Predicate Petri nets exist in the literature (Röck & Kresman, 2006), the tools available
to work with this type of Petri nets are very scarce. As such, we use regular places to represent
predicates, as explained next.

Definition 2.4. A predicate place p is a place associated with the predicate P, described by p |= P,
such that:

• ∀j, Pj = true ⇔ mp(j) = 1

• ∀j, Pj = f alse ⇔ mp(j) = 0,

where Pj is the predicate P at time step j.

Basically, a place representing a predicate has one token if that predicate is true and zero
tokens otherwise.

Definition 2.5. A Petri net model of a predicate is a MOPN where:

• P = {¬p, p}, where and ¬p and p are predicate places associated with predicates ¬P() and P()
respectively;

• I = ∅;

• O = ∅;

• ∀jMj = [0, 1] ∨ [1, 0].

Although we could achieve the same results by using just one place for representing a predi-
cate, that would lead to the use of inhibitor arcs. Once again we rather maintain the use of the
base Petri nets, with minimal extensions added, so as to be able to use a larger set of available
Petri tools. Furthemore, although it increases the number of places, it does not increase the
state space, and provides a cleaner interface to the user.
As an example, a Petri net model representing the predicate SeeBall is depicted in Figure
3. Note the usage of the predicate. (or, alternatively, p.) prefix to denote that the place is a
predicate place, and the NOT_ prefix to denote the negated predicate.

2.3.2 Macro Places
Macros, albeit not always using the same definition, are used to create hierarchical Petri nets
(Bernardinello & Cindio, 1992), leading to a higher degree of modularity. The use of macro
places allows the drawing of entire Petri net models from lower layers has single places in
higher layers, providing for cleaner and reusable models.
Places associated with macros will also have a particular prefix in the place label. Furthermore,
since macro places represent entire Petri nets, we need to have expansion algorithms when
obtaining one single Petri net without macro places. These details will be given later in Section
4.1.

Autonomous	Agents70

3. Modelling Single-Robot Tasks using Petri Nets

The base framework used throughout this work was developed aiming at:

Modularity - fostering the reuse of developed components;

Design - providing an intuitive, and possibly graphical, task design solution;

Analysis - providing means to analyse a robotic task both before and after its execution;

Execution - keeping the models suitable for execution, taking into account that its implemen-
tation would have to follow the framework theoretical foundations.

To achieve these goals, a Petri net based solution was developed, using four different layers,
as depicted in Figure 4.

Organization
Layer

Behaviour
Coordinator Layer

Action Executor
Layer

Environment
Layer

E
x
ec
u
ti
o
n

A
n
a
ly
si
s

Fig. 4. Models Hierarchy.

Each layer is formed by a set of Petri net models which represent different granularity levels,
being the Environment layer the bottom one, and the Organisation layer the top one. The
meaning of each layer is as follows:

Environment Layer Petri net models at this level represent changes made by other agents
(such as other robots) or even physics (such as the braking of a free rolling ball);

Action Executor Layer At this level we find Petri net models of the actions, representing
the changes performed in the environment by these actions, and the conditions under
which these changes can occur;

Action Coordinator Layer Here lies the Petri net based task plan models, which basically
consist of compositions of actions;

Organisation Layer This layer is where higher decision models appear, such as goal selection,
thus consisting of compositions of Action Coordinator Layer models.

As can be seen in Figure 4, all models are used in the analysis process, but only the two higher
layers and, partially, the Action Executor layer models will be used for execution. This will
be further explained in the following sections. Note that, currently, we have not implemented
the Organisation layer yet.

3.1 Environment Layer
To better understand how the Environment models are designed, consider a free rolling ball.
In this case, due to friction on the floor, it is expected that the ball will stop after some time.
To model this process using a GSPN model under our framework, we must first discretise it,
such that we can describe it through the use of logic predicates. In this example, we could

consider that the ball could be moving fast, slowly or be stopped, and that the ball will, with
time, pass from the fastest movement to the stopped state. With this discretisation, we can
model the free ball movement with the Petri net model depicted in Figure 5.

Fig. 5. Petri net model of a moving ball.

If, for instance, one also wanted to model the fact that some other agent could increase the
ball speed, we could add transitions in the opposite direction, albeit with different associated
rates, considering the probability of that occurrence. Furthermore, it is also possible to include
several transitions with different rates associated with the same state change, as in the example
depicted in Figure 6. In this example, the rate at which the ball slows down depends on the
weather conditions.

Fig. 6. Petri net model of a moving ball considering thee weather conditions.

3.2 Action Executor Layer
Each action Petri net model is a GSPN which represents how the action impacts the environ-
ment and under which conditions. As such, each action model consists on a set of transitions
representing the environment changes, which can be associated to the success or failure of
the action, following the rules described in Definition 3.1. The general model of an action is
depicted in Figure 7.

Definition 3.1. A Petri net model of an action is a GSPN, where:

1. P = PE ∪ PR contains only predicate places, where

Petri	Net	Robotic	Task	Plan	Representation:	Modelling,	Analysis	and	Execution 71

3. Modelling Single-Robot Tasks using Petri Nets

The base framework used throughout this work was developed aiming at:

Modularity - fostering the reuse of developed components;

Design - providing an intuitive, and possibly graphical, task design solution;

Analysis - providing means to analyse a robotic task both before and after its execution;

Execution - keeping the models suitable for execution, taking into account that its implemen-
tation would have to follow the framework theoretical foundations.

To achieve these goals, a Petri net based solution was developed, using four different layers,
as depicted in Figure 4.

Organization
Layer

Behaviour
Coordinator Layer

Action Executor
Layer

Environment
Layer

E
x
ec
u
ti
o
n

A
n
a
ly
si
s

Fig. 4. Models Hierarchy.

Each layer is formed by a set of Petri net models which represent different granularity levels,
being the Environment layer the bottom one, and the Organisation layer the top one. The
meaning of each layer is as follows:

Environment Layer Petri net models at this level represent changes made by other agents
(such as other robots) or even physics (such as the braking of a free rolling ball);

Action Executor Layer At this level we find Petri net models of the actions, representing
the changes performed in the environment by these actions, and the conditions under
which these changes can occur;

Action Coordinator Layer Here lies the Petri net based task plan models, which basically
consist of compositions of actions;

Organisation Layer This layer is where higher decision models appear, such as goal selection,
thus consisting of compositions of Action Coordinator Layer models.

As can be seen in Figure 4, all models are used in the analysis process, but only the two higher
layers and, partially, the Action Executor layer models will be used for execution. This will
be further explained in the following sections. Note that, currently, we have not implemented
the Organisation layer yet.

3.1 Environment Layer
To better understand how the Environment models are designed, consider a free rolling ball.
In this case, due to friction on the floor, it is expected that the ball will stop after some time.
To model this process using a GSPN model under our framework, we must first discretise it,
such that we can describe it through the use of logic predicates. In this example, we could

consider that the ball could be moving fast, slowly or be stopped, and that the ball will, with
time, pass from the fastest movement to the stopped state. With this discretisation, we can
model the free ball movement with the Petri net model depicted in Figure 5.

Fig. 5. Petri net model of a moving ball.

If, for instance, one also wanted to model the fact that some other agent could increase the
ball speed, we could add transitions in the opposite direction, albeit with different associated
rates, considering the probability of that occurrence. Furthermore, it is also possible to include
several transitions with different rates associated with the same state change, as in the example
depicted in Figure 6. In this example, the rate at which the ball slows down depends on the
weather conditions.

Fig. 6. Petri net model of a moving ball considering thee weather conditions.

3.2 Action Executor Layer
Each action Petri net model is a GSPN which represents how the action impacts the environ-
ment and under which conditions. As such, each action model consists on a set of transitions
representing the environment changes, which can be associated to the success or failure of
the action, following the rules described in Definition 3.1. The general model of an action is
depicted in Figure 7.

Definition 3.1. A Petri net model of an action is a GSPN, where:

1. P = PE ∪ PR contains only predicate places, where

Autonomous	Agents72

success

Running-conditions

Effects

success

p.NOT_Eff
1

p.NOT_Eff
n

.

.

.

p.r.RC
1

p.r.RC
u

.

.

.

p.e.Eff
1

p.e.Eff
n

.

.

.

.

.

.

failure

p.NOT_F
b

p.NOT_F
d

.

.

.

p.F
b

p.F
d

.

.

.

failure

p.NOT_F
x

p.NOT_F
z

.

.

.

p.F
x

p.F
z

.

.

.

.

.

.

Failure
Effects

Success
Effects

p.NOT_S
k

p.NOT_S
m

.

.

.

p.S
k

p.S
m

.

.

.

p.NOT_S
h

p.NOT_S
v

.

.

.

p.S
h

p.S
v

.

.

.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

p.S
l

p.S
q

.

.

.

..
.

p.S
t

p.S
r

.

.

.

..
.

p.F
a

p.F
e

.

.

.

..
.

p.F
w

p.F
y

.

.

.

..
.

..
.

Desired
Effects

Intermediate
Effects

Fig. 7. General action model.

PE is the effects place set;

PR is the running-conditions place set;

2. All places in PR have “r.” after the “predicate.” prefix;

3. PE = PES ∪ PEF , where PES and PEF are designated respectively success places set and failure
places set.

4. PES = PESI
∪ PESD

, where PESI
and PESD

are designated respectively intermediate effects
place set and desired effects place set.

5. All places in PESD
have “e.” after the “predicate.” prefix;

6. T = TS ∪ TF with TS ∩ TF = ∅, where:

TS is the set of transitions associated with successful impact of the action;

TF is the set of transitions associated with failure impact of the action;

7. If there is an arc from place pn, associated to predicate P , to transition tj, then there is an arc
from tj to place pm, associated to predicate ¬P , or an arc back to pn;

8. All transitions have one input arc from each running-condition;

9. If a desired effect place is an output place of a transition, then all the desired effects places are
also output places of that transition;

10. All transitions tj in TS have the label successj or sj;

11. All transitions tj in TF have the label failurej or fj;

Having the running-conditions as input places of all transitions models the fact that the action
can only cause any impact on the environment if these conditions are met. Given that all places
are predicate places, rule 7 implies that the action model maintains the predicates Definition
2.5, resulting in a safe Petri net (has at most one token per place for all markings).
As an example, consider an action named CatchBall, where the purpose of the robot is to
catch a ball. It would be expected that the robot could only catch the ball if it were near the
ball and if it could see the ball, meaning its running-conditions would be CloseToBall and
SeeBall. Furthermore, the desired-effects of this action would be catching the ball, i.e., getting
the predicate HasBall to true. This results in the Petri net model show in Figure 8.

Fig. 8. Petri net model of action CatchBall.

Failures were not explicitely included in this model. Although including them is possible, and
even expected in many situations, these are already implicitely present, since this model will
be composed with the environment model, which models changes performed by others.
For execution purposes the Action Executor models are used partially, by using only the
running-conditions and desired-effects to prevent using each action outside their scope.

3.3 Action Coordinator Layer
The Action Coordinator layer contains Petri net models of the task plans. A Petri net model
of a task plan consists of a MOPN where places are associated with actions. Places associated
with actions are referred to as action places, and correspond to action macro places.
To better explain this topic, we will follow an example of a soccer playing robot. In this ex-
ample, the robot uses actions Move2Ball, CatchBall, Dribble2Goal, Aim2Score and
Kick2Goal, resulting in the task plan Petri net model depicted in Figure 9.

Petri	Net	Robotic	Task	Plan	Representation:	Modelling,	Analysis	and	Execution 73

success

Running-conditions

Effects

success

p.NOT_Eff
1

p.NOT_Eff
n

.

.

.

p.r.RC
1

p.r.RC
u

.

.

.

p.e.Eff
1

p.e.Eff
n

.

.

.

.

.

.

failure

p.NOT_F
b

p.NOT_F
d

.

.

.

p.F
b

p.F
d

.

.

.

failure

p.NOT_F
x

p.NOT_F
z

.

.

.

p.F
x

p.F
z

.

.

.

.

.

.

Failure
Effects

Success
Effects

p.NOT_S
k

p.NOT_S
m

.

.

.

p.S
k

p.S
m

.

.

.

p.NOT_S
h

p.NOT_S
v

.

.

.

p.S
h

p.S
v

.

.

.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

p.S
l

p.S
q

.

.

.

..
.

p.S
t

p.S
r

.

.

.

..
.

p.F
a

p.F
e

.

.

.

..
.

p.F
w

p.F
y

.

.

.

..
.

..
.

Desired
Effects

Intermediate
Effects

Fig. 7. General action model.

PE is the effects place set;

PR is the running-conditions place set;

2. All places in PR have “r.” after the “predicate.” prefix;

3. PE = PES ∪ PEF , where PES and PEF are designated respectively success places set and failure
places set.

4. PES = PESI
∪ PESD

, where PESI
and PESD

are designated respectively intermediate effects
place set and desired effects place set.

5. All places in PESD
have “e.” after the “predicate.” prefix;

6. T = TS ∪ TF with TS ∩ TF = ∅, where:

TS is the set of transitions associated with successful impact of the action;

TF is the set of transitions associated with failure impact of the action;

7. If there is an arc from place pn, associated to predicate P , to transition tj, then there is an arc
from tj to place pm, associated to predicate ¬P , or an arc back to pn;

8. All transitions have one input arc from each running-condition;

9. If a desired effect place is an output place of a transition, then all the desired effects places are
also output places of that transition;

10. All transitions tj in TS have the label successj or sj;

11. All transitions tj in TF have the label failurej or fj;

Having the running-conditions as input places of all transitions models the fact that the action
can only cause any impact on the environment if these conditions are met. Given that all places
are predicate places, rule 7 implies that the action model maintains the predicates Definition
2.5, resulting in a safe Petri net (has at most one token per place for all markings).
As an example, consider an action named CatchBall, where the purpose of the robot is to
catch a ball. It would be expected that the robot could only catch the ball if it were near the
ball and if it could see the ball, meaning its running-conditions would be CloseToBall and
SeeBall. Furthermore, the desired-effects of this action would be catching the ball, i.e., getting
the predicate HasBall to true. This results in the Petri net model show in Figure 8.

Fig. 8. Petri net model of action CatchBall.

Failures were not explicitely included in this model. Although including them is possible, and
even expected in many situations, these are already implicitely present, since this model will
be composed with the environment model, which models changes performed by others.
For execution purposes the Action Executor models are used partially, by using only the
running-conditions and desired-effects to prevent using each action outside their scope.

3.3 Action Coordinator Layer
The Action Coordinator layer contains Petri net models of the task plans. A Petri net model
of a task plan consists of a MOPN where places are associated with actions. Places associated
with actions are referred to as action places, and correspond to action macro places.
To better explain this topic, we will follow an example of a soccer playing robot. In this ex-
ample, the robot uses actions Move2Ball, CatchBall, Dribble2Goal, Aim2Score and
Kick2Goal, resulting in the task plan Petri net model depicted in Figure 9.

Autonomous	Agents74

Fig. 9. Petri net model of the Score_Goal task.

Note that we use “action.” in the labels prefixes to denote action places. The label “o.” is
used to denote which places should be marked in the desired final state of a given task model,
denoting them as output places. Although this knowledge is not used yet, it will allow us to
determine a task desired-effects in the future. There is no need to mark the places which are
marked in the initial state, since this information is already given by the initial marking of the
task model.

4. Analysis of Single-Robot Tasks

Given that all layers are modelled using Petri nets, we can compose all these models together
in a single Petri net model. This single Petri net model represents the overall task, which we
can analyse a priori. This analysis can be both for logical (e.g. deadlocks) and probabilistic
performance properties (e.g. probability of reaching a given state).
Furthermore, there are a number of properties that must be met during design time, which
allow for some error detection at an early stage of development. As an example consider the
boundedness of the net. Given that we are using predicate places, they can have only one or
zero tokens. If one detects more than one token in a predicate place at design time, or that
the sum of tokens in the two places associated with a predicate is not always one, it means
that there is an error in the models. In the predicate places case, this translates to a simple
design rule which states that if a given predicate p is an input place of a transition t, then
one, and only one, of predicate places NOT_p or p must be an output place of transition t.
If additionally one requires macro places to have at most one token, it results in a safe net
requirement (i.e., have at most one token for all places, for all possible markings). Having the
total number of tokens in the two places associated with a predicate equal to one is referred
in Petri nets as a place invariant (Murata, 1989), which can also be determined from a priori
analysis.
Having the modelling and analysis processes integrated under the same framework allows
for a design process based on a continuous loop of design-analysis-design. This loop guides
the development of the tasks in a structured way, leading to improved task plans even before
gathering results from the execution process.

Furthermore, data also can also be extracted from the execution process in order to analyse
the task a posteriori, and to further improve the models.

4.1 Expansion Process
The Expansion Process enables us to obtain the single Petri net for analysis by merging all the
environment, action and task Petri net models. The place labels play an important role in this
process, since these allow us to distinguish between the different types of places.
The expansion process is performed using Algorithm 4.1 while obeying the following set of
rules:

• Predicate places with the same label are considered the same place;

• Macro places are always different places, regardless of their label;

• All transitions are different, regardless of their label.

The action macro places function as enabling places of all transitions on the associated models,
i.e., if there is a token in the action macro place, then the transitions of the associated Petri net
model are enabled (as long as the running-conditions and remaining input predicate places are
true).

Algorithm 4.1: Full task Petri net model generation algorithm.

Input: Environment, task and action Petri net models
Output: Full Petri net model of the task

1 begin
2 Create an empty Petri Net, denoting it full-net;
3 foreach environment model do
4 Add the environment model to full-net;
5 Prefix all added transitions with the name of the model;
6 end
7 Add the task model to full-net;
8 foreach action macro place in full-net do
9 Add the Petri net model of the action associated with the action macro place to

full-net;
10 Add an arc from the action macro place to all transitions in the added Petri net

model;
11 Add an arc from all transitions in the added Petri net model to the action macro

place;
12 Prefix the action macro place label with an “e” to denote that this is no longer a

macro place, i.e., it has been expanded;
13 Prefix the labels of all added transitions with the name of the action;
14 end
15 Remove the tokens from all predicate places;
16 end

Prefixing the transitions with the model names during the expansion algorithm enables us to
distinguish them while performing the analysis of the final model.
After having obtained the single Petri net, one needs to choose an initial state for the task by
setting the number of tokens in the predicate places. Having set the initial marking of the net,

Petri	Net	Robotic	Task	Plan	Representation:	Modelling,	Analysis	and	Execution 75

Fig. 9. Petri net model of the Score_Goal task.

Note that we use “action.” in the labels prefixes to denote action places. The label “o.” is
used to denote which places should be marked in the desired final state of a given task model,
denoting them as output places. Although this knowledge is not used yet, it will allow us to
determine a task desired-effects in the future. There is no need to mark the places which are
marked in the initial state, since this information is already given by the initial marking of the
task model.

4. Analysis of Single-Robot Tasks

Given that all layers are modelled using Petri nets, we can compose all these models together
in a single Petri net model. This single Petri net model represents the overall task, which we
can analyse a priori. This analysis can be both for logical (e.g. deadlocks) and probabilistic
performance properties (e.g. probability of reaching a given state).
Furthermore, there are a number of properties that must be met during design time, which
allow for some error detection at an early stage of development. As an example consider the
boundedness of the net. Given that we are using predicate places, they can have only one or
zero tokens. If one detects more than one token in a predicate place at design time, or that
the sum of tokens in the two places associated with a predicate is not always one, it means
that there is an error in the models. In the predicate places case, this translates to a simple
design rule which states that if a given predicate p is an input place of a transition t, then
one, and only one, of predicate places NOT_p or p must be an output place of transition t.
If additionally one requires macro places to have at most one token, it results in a safe net
requirement (i.e., have at most one token for all places, for all possible markings). Having the
total number of tokens in the two places associated with a predicate equal to one is referred
in Petri nets as a place invariant (Murata, 1989), which can also be determined from a priori
analysis.
Having the modelling and analysis processes integrated under the same framework allows
for a design process based on a continuous loop of design-analysis-design. This loop guides
the development of the tasks in a structured way, leading to improved task plans even before
gathering results from the execution process.

Furthermore, data also can also be extracted from the execution process in order to analyse
the task a posteriori, and to further improve the models.

4.1 Expansion Process
The Expansion Process enables us to obtain the single Petri net for analysis by merging all the
environment, action and task Petri net models. The place labels play an important role in this
process, since these allow us to distinguish between the different types of places.
The expansion process is performed using Algorithm 4.1 while obeying the following set of
rules:

• Predicate places with the same label are considered the same place;

• Macro places are always different places, regardless of their label;

• All transitions are different, regardless of their label.

The action macro places function as enabling places of all transitions on the associated models,
i.e., if there is a token in the action macro place, then the transitions of the associated Petri net
model are enabled (as long as the running-conditions and remaining input predicate places are
true).

Algorithm 4.1: Full task Petri net model generation algorithm.

Input: Environment, task and action Petri net models
Output: Full Petri net model of the task

1 begin
2 Create an empty Petri Net, denoting it full-net;
3 foreach environment model do
4 Add the environment model to full-net;
5 Prefix all added transitions with the name of the model;
6 end
7 Add the task model to full-net;
8 foreach action macro place in full-net do
9 Add the Petri net model of the action associated with the action macro place to

full-net;
10 Add an arc from the action macro place to all transitions in the added Petri net

model;
11 Add an arc from all transitions in the added Petri net model to the action macro

place;
12 Prefix the action macro place label with an “e” to denote that this is no longer a

macro place, i.e., it has been expanded;
13 Prefix the labels of all added transitions with the name of the action;
14 end
15 Remove the tokens from all predicate places;
16 end

Prefixing the transitions with the model names during the expansion algorithm enables us to
distinguish them while performing the analysis of the final model.
After having obtained the single Petri net, one needs to choose an initial state for the task by
setting the number of tokens in the predicate places. Having set the initial marking of the net,

Autonomous	Agents76

one can use available tools such as PIPE (Akharware, 2005) or TimeNET (Zimmermann, 2001)
to study the task properties.

5. Execution of Single-Robot Tasks

In order to be able to execute the task plans developed within the framework, one needs to
have a Petri net execution framework. In our case we have implemented such a framework in
the decision layer of our MeRMaID middleware (Barbosa et al., 2007).
In MeRMaID, the sensorial part of the implementation keeps the predicates up to date (at least
all the predicates that are revelant at any given state). Given a Petri net based task plan model,
the Petri net Executor checks which transitions are enabled, considering the current selected
actions and enabled predicates, and fires them accordingly. All actions that have tokens at
any given moment are the actions that will be enabled. We have also taken advantage of part
of the information provided at the Action Executor level, namely the running-conditions, so as
to prevent running an action at the lower level when these are not satisfied.
The execution of the tasks can be monitored in order to assert and compare experimental
results with the theoretical ones, allowing to check the models for errors or needed improve-
ments.

6. Single-robot Task Example

(a) Ball position model. (b) HasBall model

(c) Robot Position model. (d) CloseToBall model

Fig. 10. Environment models for task Score_Goal.

To illustrate the framework application, we will detail a robotic soccer example using the
single-robot task plan depicted in Figure 9. In this task we use the following predicates:

Ball position: BallOwnGoal, BallNearOwnGoal, BallMidField, BallNearOppGoal,
BallOppGoal;

Robot position: RobotNearOwnGoal, RobotMidField, RobotNearOppGoal;

Other: SeeBall, HasBall, CloseToBall.

(a) Move2Ball model.

(b) Dribble2Goal model. (c) Kick2Goal model.

Fig. 11. Action models

Predicate HasBall is true when the robot has posession of the ball, while CloseToBall is
true when the robot is near the ball. The soccer field was divided in three regions, leading to
the ball and robot position models, plus predicates BallOwnGoal and BallOppGoal, which
are true when a goal is scored in our goal or in the opponent goal, respectively.

Petri	Net	Robotic	Task	Plan	Representation:	Modelling,	Analysis	and	Execution 77

one can use available tools such as PIPE (Akharware, 2005) or TimeNET (Zimmermann, 2001)
to study the task properties.

5. Execution of Single-Robot Tasks

In order to be able to execute the task plans developed within the framework, one needs to
have a Petri net execution framework. In our case we have implemented such a framework in
the decision layer of our MeRMaID middleware (Barbosa et al., 2007).
In MeRMaID, the sensorial part of the implementation keeps the predicates up to date (at least
all the predicates that are revelant at any given state). Given a Petri net based task plan model,
the Petri net Executor checks which transitions are enabled, considering the current selected
actions and enabled predicates, and fires them accordingly. All actions that have tokens at
any given moment are the actions that will be enabled. We have also taken advantage of part
of the information provided at the Action Executor level, namely the running-conditions, so as
to prevent running an action at the lower level when these are not satisfied.
The execution of the tasks can be monitored in order to assert and compare experimental
results with the theoretical ones, allowing to check the models for errors or needed improve-
ments.

6. Single-robot Task Example

(a) Ball position model. (b) HasBall model

(c) Robot Position model. (d) CloseToBall model

Fig. 10. Environment models for task Score_Goal.

To illustrate the framework application, we will detail a robotic soccer example using the
single-robot task plan depicted in Figure 9. In this task we use the following predicates:

Ball position: BallOwnGoal, BallNearOwnGoal, BallMidField, BallNearOppGoal,
BallOppGoal;

Robot position: RobotNearOwnGoal, RobotMidField, RobotNearOppGoal;

Other: SeeBall, HasBall, CloseToBall.

(a) Move2Ball model.

(b) Dribble2Goal model. (c) Kick2Goal model.

Fig. 11. Action models

Predicate HasBall is true when the robot has posession of the ball, while CloseToBall is
true when the robot is near the ball. The soccer field was divided in three regions, leading to
the ball and robot position models, plus predicates BallOwnGoal and BallOppGoal, which
are true when a goal is scored in our goal or in the opponent goal, respectively.

Autonomous	Agents78

The environment models for this task are depicted in Figure 10. As can be seen from the
models, we considered that the ball can be moved without being a direct result of the robot
actions, or leave the proximity of the robot, as long as the robot does not hold the ball (Figure
10a and Figure 10d, respectively). The Petri net model in Figure 10b models the fact that
the robot will eventually loose the ball posession. Furthermore, we considered that the robot
could always see the ball, meaning predicate SeeBall is always true.
The actions used in this task are StandBy, Move2Ball, CatchBall (see Figure 8),
Dribble2Goal and Kick2Goal, with the models being depicted in Figure 11. Note that
we used labels sn for success transitions, and fn for failure transitions. The StandBy model is
not shown because it is an empty model, i.e, since it does not perform changes in the environ-
ment, it does not contain any transition.
Table 1 gives a summary of the actions running-conditions and desired-effects. Recall that this
information is available in the predicate labels of the action models, as explained in Section
3.2.

Action Running-conditions Desired-effects
StandBy - -
Move2Ball SeeBall CloseToBall
CatchBall SeeBall, Close2Ball HasBall

Dribble2Goal HasBall RobotNearOppGoal, BallNearOppGoal
Kick2Goal HasBall BallOppGoal

Table 1. Action properties.

The Move2Ball action is used by the robot to get near the ball. The model basically makes
the robot position predicates change torwards the ball position predicate that is true, as long
as the robot sees the ball. We include additional tests to avoid the robot moving to the ball
when this is inside a goal.
The CatchBall action purpose is to grab the ball when the robot is close to the ball. As such,
it makes the predicate HasBall become true, as long as the robot sees the ball and is near the
ball.
The Dribble2Goal action is used by the robot to take the ball from its current posi-
tion to near the opponent goal, thus changing the robot and ball position predicates until
BallNearOppGoal and RobotNearOppGoal become true, as long as the robot has the ball.
Action Kick2Goal purpose is to score a goal, making the predicate BallOppGoal become
true, as long as the robot has the ball. While actions StandBy, Move2Ball, CatchBall
and Dribble2Goal do not explicitely include failures, the Kick2Goal action models does
so. In action Kick2Goal we explicit modelled the fact that the robot can shoot torwards the
goal from any place of the field, but the ball can end in any place of the field. Transitions si
correspond to success transitions, while transitions fi correspond to failures. By setting an
higher rate to transition s1 then s2 and s3, we are setting an higher probably of scoring when
closer to the opponent goal. The other actions failures are modelled through the environment
models. For instance, the predicate HasBall can become false at any time (see Figure 10b),
leading to a failure of actions such as CatchBall and Dribble2Goal.
The rates used in the various models are as follows: 0.1 for the environment model rates
except for the HasBall model, which we used 0.2; 1.0 for all action success transitions, except
for transitions s2 and s3 in action Kick2Goal, where we used 1/4 and 1/8 respectively; for
the failure transitions we used 1/4. Note that since these are theoretical models, we consired

time to be measured in time units, meaning that an exponential transition with a rate of 1.0
will fire in average 1.0 times per time unit when enabled.

6.1 Results
We performed three transient tests of the task plan model shown in Figure 9 with TimeNET
(Zimmermann, 2001), by considering different weights for transitions t5 and t7 (the only ran-
dom switch available):

Shoot_First: by assigning weight 0 to transition t5 and weight 1 to t7, t5 will never fire, mean-
ing the robot goes from action CatchBall to action Kick2Goalwithout going through
action Dribble2Goal, thus kicking to the goal as soon as it grabs the ball;

Shoot_50_50: by assigning weigh 1 to transitions t5 and t7, the robot chooses one of
Dribble2Goal and Kick2Goal with probability 0.5, as soon as it grabs the ball while
running action CatchBall;

Shoot_Later: by assigning weight 1 to transition t5 and weight 0 to t7, t7 never fires, meaning
the robot runs action Kick2Goal after having run action Dribble2Goal successfully.
As such, the robot will only kick the ball when it has posession of the ball and it is near
the opponent goal;

For each test we placed the robot near its goal and the ball in the field center, resulting
in the following initial predicate state: NOT_BallOwnGoal, NOT_BallNearOwnGoal,
NOT_BallMidField, BallMidField, NOT_BallNearOppGoal, NOT_BallOppGoal,
RobotNearOwnGoal, NOT_RobotMidField, NOT_RobotNearOppGoal, SeeBall,
NOT_HasBall and NOT_CloseToBall.
Since none of the actions performs changes on the environment when the ball is inside a
goal, one can expect the task to include deadlocks, corresponding to scored goals. Qualitative
analysis of the full task model confirmed that expectation, resulting in six deadlock states,
corresponding to a goal scored from any of the three field regions into one of the two possible
goals. Furthermore, we determined that the task is safe, having at most on token per place.
Each test consisted in analysing the task running from the initial marking until a deadlock
occurred (goal scored), computing the number of expected tokens in places BallOwnGoal
and BallOppGoal over time. This measure corresponds to the probability of having a goal
scored in our goal or the opponent goal, yielding the results depicted in Figure 12.
The plots confirm that the ball must end in one of the goals, given that the sum of the proba-
bilities of scoring in either goal when the system is already stationary is one.
As expected, kicking as soon as the robot grabs the ball leads to a lower scoring probability in
the long term, since the the robot kicks from any position on the field, leading to more failures.
However, analysing the initial time instants, depicted in Figure 13, shows that shooting the
ball immediately leads to a higher scoring probability in the short term.
This is one example of interesting a priori results one can obtain using this framework. This
knowledge can then be used in runtime, for instance, to change the weights of transitions t5
and t7 according to the score status and the game time left.
In qualitative terms, we determined that the task is safe, i.e., there is at most one or zero tokens
in each place for all markings. Given that the action models are safe (see Definition 3.1), and
the task Score_Goal is also safe (considering all possible predicate states), this results was
expected. Furthermore, we also determined that all two places associated to a predicated
formed place invariants wiht a total of 1 tokens, thus fully obeying Definition 2.5, as expected.

Petri	Net	Robotic	Task	Plan	Representation:	Modelling,	Analysis	and	Execution 79

The environment models for this task are depicted in Figure 10. As can be seen from the
models, we considered that the ball can be moved without being a direct result of the robot
actions, or leave the proximity of the robot, as long as the robot does not hold the ball (Figure
10a and Figure 10d, respectively). The Petri net model in Figure 10b models the fact that
the robot will eventually loose the ball posession. Furthermore, we considered that the robot
could always see the ball, meaning predicate SeeBall is always true.
The actions used in this task are StandBy, Move2Ball, CatchBall (see Figure 8),
Dribble2Goal and Kick2Goal, with the models being depicted in Figure 11. Note that
we used labels sn for success transitions, and fn for failure transitions. The StandBy model is
not shown because it is an empty model, i.e, since it does not perform changes in the environ-
ment, it does not contain any transition.
Table 1 gives a summary of the actions running-conditions and desired-effects. Recall that this
information is available in the predicate labels of the action models, as explained in Section
3.2.

Action Running-conditions Desired-effects
StandBy - -
Move2Ball SeeBall CloseToBall
CatchBall SeeBall, Close2Ball HasBall

Dribble2Goal HasBall RobotNearOppGoal, BallNearOppGoal
Kick2Goal HasBall BallOppGoal

Table 1. Action properties.

The Move2Ball action is used by the robot to get near the ball. The model basically makes
the robot position predicates change torwards the ball position predicate that is true, as long
as the robot sees the ball. We include additional tests to avoid the robot moving to the ball
when this is inside a goal.
The CatchBall action purpose is to grab the ball when the robot is close to the ball. As such,
it makes the predicate HasBall become true, as long as the robot sees the ball and is near the
ball.
The Dribble2Goal action is used by the robot to take the ball from its current posi-
tion to near the opponent goal, thus changing the robot and ball position predicates until
BallNearOppGoal and RobotNearOppGoal become true, as long as the robot has the ball.
Action Kick2Goal purpose is to score a goal, making the predicate BallOppGoal become
true, as long as the robot has the ball. While actions StandBy, Move2Ball, CatchBall
and Dribble2Goal do not explicitely include failures, the Kick2Goal action models does
so. In action Kick2Goal we explicit modelled the fact that the robot can shoot torwards the
goal from any place of the field, but the ball can end in any place of the field. Transitions si
correspond to success transitions, while transitions fi correspond to failures. By setting an
higher rate to transition s1 then s2 and s3, we are setting an higher probably of scoring when
closer to the opponent goal. The other actions failures are modelled through the environment
models. For instance, the predicate HasBall can become false at any time (see Figure 10b),
leading to a failure of actions such as CatchBall and Dribble2Goal.
The rates used in the various models are as follows: 0.1 for the environment model rates
except for the HasBall model, which we used 0.2; 1.0 for all action success transitions, except
for transitions s2 and s3 in action Kick2Goal, where we used 1/4 and 1/8 respectively; for
the failure transitions we used 1/4. Note that since these are theoretical models, we consired

time to be measured in time units, meaning that an exponential transition with a rate of 1.0
will fire in average 1.0 times per time unit when enabled.

6.1 Results
We performed three transient tests of the task plan model shown in Figure 9 with TimeNET
(Zimmermann, 2001), by considering different weights for transitions t5 and t7 (the only ran-
dom switch available):

Shoot_First: by assigning weight 0 to transition t5 and weight 1 to t7, t5 will never fire, mean-
ing the robot goes from action CatchBall to action Kick2Goalwithout going through
action Dribble2Goal, thus kicking to the goal as soon as it grabs the ball;

Shoot_50_50: by assigning weigh 1 to transitions t5 and t7, the robot chooses one of
Dribble2Goal and Kick2Goal with probability 0.5, as soon as it grabs the ball while
running action CatchBall;

Shoot_Later: by assigning weight 1 to transition t5 and weight 0 to t7, t7 never fires, meaning
the robot runs action Kick2Goal after having run action Dribble2Goal successfully.
As such, the robot will only kick the ball when it has posession of the ball and it is near
the opponent goal;

For each test we placed the robot near its goal and the ball in the field center, resulting
in the following initial predicate state: NOT_BallOwnGoal, NOT_BallNearOwnGoal,
NOT_BallMidField, BallMidField, NOT_BallNearOppGoal, NOT_BallOppGoal,
RobotNearOwnGoal, NOT_RobotMidField, NOT_RobotNearOppGoal, SeeBall,
NOT_HasBall and NOT_CloseToBall.
Since none of the actions performs changes on the environment when the ball is inside a
goal, one can expect the task to include deadlocks, corresponding to scored goals. Qualitative
analysis of the full task model confirmed that expectation, resulting in six deadlock states,
corresponding to a goal scored from any of the three field regions into one of the two possible
goals. Furthermore, we determined that the task is safe, having at most on token per place.
Each test consisted in analysing the task running from the initial marking until a deadlock
occurred (goal scored), computing the number of expected tokens in places BallOwnGoal
and BallOppGoal over time. This measure corresponds to the probability of having a goal
scored in our goal or the opponent goal, yielding the results depicted in Figure 12.
The plots confirm that the ball must end in one of the goals, given that the sum of the proba-
bilities of scoring in either goal when the system is already stationary is one.
As expected, kicking as soon as the robot grabs the ball leads to a lower scoring probability in
the long term, since the the robot kicks from any position on the field, leading to more failures.
However, analysing the initial time instants, depicted in Figure 13, shows that shooting the
ball immediately leads to a higher scoring probability in the short term.
This is one example of interesting a priori results one can obtain using this framework. This
knowledge can then be used in runtime, for instance, to change the weights of transitions t5
and t7 according to the score status and the game time left.
In qualitative terms, we determined that the task is safe, i.e., there is at most one or zero tokens
in each place for all markings. Given that the action models are safe (see Definition 3.1), and
the task Score_Goal is also safe (considering all possible predicate states), this results was
expected. Furthermore, we also determined that all two places associated to a predicated
formed place invariants wiht a total of 1 tokens, thus fully obeying Definition 2.5, as expected.

Autonomous	Agents80

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X: 500
Y: 0.8084

Time [time units]

P
ro

ba
bi

lit
y(

t>
t’)

Transient analysis using TimeNET for measure BallOppGoal_Probability

X: 500
Y: 0.7853

X: 500
Y: 0.7504

Shoot_First

Shoot_50_50
Shoot_Later

(a) Probability of scoring in the opponent goal.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X: 500
Y: 0.2496

Time [time units]

P
ro

ba
bi

lit
y(

t>
t’)

Transient analysis using TimeNET for measure BallOwnGoal_Probability

X: 500
Y: 0.2147

X: 500
Y: 0.1916

Shoot_First

Shoot_50_50
Shoot_Later

(b) Probability of scoring in our goal.

Fig. 12. Score goal probability evolution.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Time [time units]

P
ro

ba
bi

lit
y(

t>
t’)

Transient analysis using TimeNET for measure BallOppGoal_Probability (short−term)

Shoot_First

Shoot_50_50
Shoot_Later

Fig. 13. Probability of scoring in the opponent goal (initial time instants).

7. Modelling Multi-Robot Tasks using Petri Nets

The main difference between individual tasks and cooperative multi-robot tasks, is that some
kind of synchronism must occur between the robots during task execution. This synchronism
occurs through the use of communication, either explicitly or implicitly. Explicit communica-
tion happens when a robot (the sender) sends a message directly to the other robot(s), usually
using Ethernet or wireless communications. Implicit communication happens when a robot,
or robots, (the receivers) perceive some situation regarding the sender robot. As such, in or-
der to model multi-robot tasks with our Petri Net based framework, we need first to introduce
communication models.

7.1 Communication Models
The major problem when using communication is the time information takes to go from the
sender to the receiver, which, theoretically, can go from zero time to infinite time (communica-
tion failure). To model communication, we considered three different communication models,

which cover this time range. The base concept in these models is that a robot has a predicate
place at a given value and wishes to transmit that information to a teammate. The teammate,
upon receiving the information, gets its predicate updated to the same value as its teammate.
The simplest communication model is presented in Figure 14a. Here the communication is
considered instantaneous and always successful. Increasing the model complexity by adding
a probabilistic arrival time for the communication, results in the model depicted in Figure 14b.
In this case, communications are still considered always successful, but the amount of time it
takes varies according to an exponential distribution. The full communication model is pre-
sented in Figure 14c. Here, we not only include a varying time delay, but also the possibility
that the transition never reaches its destination, thus modelling communication failures.

sendMsg

recvMsg

Sender

Receiver

success

(a) Deterministic communication
model without failures.

sendMsg

recvMsg

Sender

Receiver

success

(b) Communication model with
exponentially distributed time and
no failures.

sendMsg

recvMsg

Sender

Receiver

success

failure

(c) Full communication model with
exponentially distributed time and
failures.

sendMsg

recvMsg

Sender

Receiver

s.success

s.failure

r.success

(d) Separate view of the full
communications model.

Fig. 14. Communication models.

Given the various communication models, we can choose which one to use, according to the
context where the model is being applied and the properties we wish to analyse. When using
the communication models, they will be seen in a distributed way to simplify the graphical
view, as depicted in Figure 14d. Note that, when seen distributed, the communication transi-
tions include a prefix to distinguish if the transition belongs to the sender or the receiver.

7.2 Communication Actions
In order to use the communication models to model direct communication between robots
during a relational task, we define Communication Actions, which will be used to establish
the required synchronisation. These actions, besides the specifications already defined for
ordinary actions, include an additional reset mechanism. This mechanism is used to model

Petri	Net	Robotic	Task	Plan	Representation:	Modelling,	Analysis	and	Execution 81

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X: 500
Y: 0.8084

Time [time units]

P
ro

ba
bi

lit
y(

t>
t’)

Transient analysis using TimeNET for measure BallOppGoal_Probability

X: 500
Y: 0.7853

X: 500
Y: 0.7504

Shoot_First

Shoot_50_50
Shoot_Later

(a) Probability of scoring in the opponent goal.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X: 500
Y: 0.2496

Time [time units]

P
ro

ba
bi

lit
y(

t>
t’)

Transient analysis using TimeNET for measure BallOwnGoal_Probability

X: 500
Y: 0.2147

X: 500
Y: 0.1916

Shoot_First

Shoot_50_50
Shoot_Later

(b) Probability of scoring in our goal.

Fig. 12. Score goal probability evolution.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Time [time units]

P
ro

ba
bi

lit
y(

t>
t’)

Transient analysis using TimeNET for measure BallOppGoal_Probability (short−term)

Shoot_First

Shoot_50_50
Shoot_Later

Fig. 13. Probability of scoring in the opponent goal (initial time instants).

7. Modelling Multi-Robot Tasks using Petri Nets

The main difference between individual tasks and cooperative multi-robot tasks, is that some
kind of synchronism must occur between the robots during task execution. This synchronism
occurs through the use of communication, either explicitly or implicitly. Explicit communica-
tion happens when a robot (the sender) sends a message directly to the other robot(s), usually
using Ethernet or wireless communications. Implicit communication happens when a robot,
or robots, (the receivers) perceive some situation regarding the sender robot. As such, in or-
der to model multi-robot tasks with our Petri Net based framework, we need first to introduce
communication models.

7.1 Communication Models
The major problem when using communication is the time information takes to go from the
sender to the receiver, which, theoretically, can go from zero time to infinite time (communica-
tion failure). To model communication, we considered three different communication models,

which cover this time range. The base concept in these models is that a robot has a predicate
place at a given value and wishes to transmit that information to a teammate. The teammate,
upon receiving the information, gets its predicate updated to the same value as its teammate.
The simplest communication model is presented in Figure 14a. Here the communication is
considered instantaneous and always successful. Increasing the model complexity by adding
a probabilistic arrival time for the communication, results in the model depicted in Figure 14b.
In this case, communications are still considered always successful, but the amount of time it
takes varies according to an exponential distribution. The full communication model is pre-
sented in Figure 14c. Here, we not only include a varying time delay, but also the possibility
that the transition never reaches its destination, thus modelling communication failures.

sendMsg

recvMsg

Sender

Receiver

success

(a) Deterministic communication
model without failures.

sendMsg

recvMsg

Sender

Receiver

success

(b) Communication model with
exponentially distributed time and
no failures.

sendMsg

recvMsg

Sender

Receiver

success

failure

(c) Full communication model with
exponentially distributed time and
failures.

sendMsg

recvMsg

Sender

Receiver

s.success

s.failure

r.success

(d) Separate view of the full
communications model.

Fig. 14. Communication models.

Given the various communication models, we can choose which one to use, according to the
context where the model is being applied and the properties we wish to analyse. When using
the communication models, they will be seen in a distributed way to simplify the graphical
view, as depicted in Figure 14d. Note that, when seen distributed, the communication transi-
tions include a prefix to distinguish if the transition belongs to the sender or the receiver.

7.2 Communication Actions
In order to use the communication models to model direct communication between robots
during a relational task, we define Communication Actions, which will be used to establish
the required synchronisation. These actions, besides the specifications already defined for
ordinary actions, include an additional reset mechanism. This mechanism is used to model

Autonomous	Agents82

the fact that a communication event, when sent, is only received if the receiving robot, or
robots, are expecting it, otherwise the event is ignored. For each sending communication
model there will always be a receiving communication action model. As an example, see the
Action Executor level models of actions SendReady2Receive and RecvReady2Receive in
Figure 15a and Figure 15b respectively.

p.NOT_Sent_Ready2ReceiveBall

s.failure

s.success

init_ok

p.r.RobotNearOppGoal

 Reset

mechanism

init_reset

input output

p.Sent_Ready2ReceiveBall

(a) Action SendReady2Receive model.

p.r.HasBall

init_ok

init_reset

p.NOT_Got_Ready2ReceiveBall p.Got_Ready2ReceiveBall

 Reset mechanism

r.sucess

input output

(b) Action RecvReady2Receive model.

Fig. 15. Communication actions example.

Note that the running-conditions cannot be connected to the reset mechanism, as the token
must be able to pass from place input to place output regardless of the current state.
The two depicted actions can be used to synchronise a two-robot behaviour, by running one
in each robot.

7.3 Multi-Robot Task Plans
With the introduction of the communication models and communication actions, specifying a
multi-robot task is similar to the specification of individual robot tasks. The major difference
is that we need to use communication actions to ensure that the behaviours running during a
multi-robot task execution are synchronised. For now we are assuming that the choice of run-
ning a relational task was already done, and focus on the multi-robot task execution analysis.

7.4 Analysis of Multi-Robot tasks
The analysis of multi-robot tasks in this framework is similar to the individual robot tasks
case, adding the introduction of the communication models and actions. The difference relies
on the fact that one needs to prefix the place labels identifying the robot they belong to, so as to
distinguish between what is running in each robot, and the expansion of the communication
actions need an additional step. Since each robot can run the same communication action
at different times during the execution of a task plan, and the resulting Petri net used for
analysis is static, simply expanding the communication actions would not work. This needed
additional step corresponds to the creation of analysis versions of the communication actions,
which is implemented through the following items:

1. Move the transition associated with the communication from the receiving action model
to the sending action model. The receiving transition is merged back with the successful
sending transition, i.e, we obtain a single transition, located in the sending action, by
connecting the arcs previously connected to the receiving transition to the successful
sending transition;

2. Add the counter RUNNING_commAction to the receiving communication action with a
token. Counter places have the prefix “c”;

3. Make the added counter a running-condition of the sending communication action, con-
nected only with the successful transition associated with the communication event.

The introduced counter will indicate the number of instances of receiving actions running in
each robot and, most important, it will allow to track if a robot receiving action is running or
not. This counter will be treated like a predicate at the expansion phase, i.e., every counter
with the same label will be considered the same place.
With these analysis versions, the communicaton actions can be used anywhere in a robot task
model, allowing for any receiving action to pair with the associated sending action, indepen-
dently of where the communication actions appear in the task models. As an example, con-
sider again the communication actions SendReady2Receive and RecvReady2Receive in
a two robot setup, with their analysis versions depicted in Figure 16a and Figure 16b.
Naturally, it should be expected to have always at most one token in the counter, otherwise
multiple actions were sending the same message simultaneously. This property can be com-
puted during the analysis phase.

init_ok

p.r.R2_RobotNearOppGoal

p.r.R1_HasBall

c.r.R1_RUNNING_recvReady2ReceiveBall

init_reset

failure
success

p.R2_Sent_Ready2ReceiveBal

p.R1_Got_Ready2ReceiveBall

p.NOT_R2_Sent_Ready2ReceiveBall

p.NOT_R1_Got_Ready2ReceiveBall

input output

(a) Action SendReady2Receive model for analysis.

p.NOT_R1_Got_Ready2ReceiveBall

init_reset

init_ok

c.R1_RUNNING_recvReady2ReceiveBall

p.R1_Got_Ready2ReceiveBall

input

(b) Action RecvReady2Receive model for
analysis.

Fig. 16. Communication actions example.

Although the action places are always considered different places, regardless of their label,
these are also prefixed with the robot label, since different robots can have different action
models. During the expansion of the macro places for analysis, all the communication action
macro places are expanded into their analysis version instead of their original version. If we
have more than two robots, then a selection mechanism must be used to select to which robot,
or robots, the message is to be sent. The user never needs to see the analysis versions of the
actions, since these are used only internally for analysis, and are automatically created from
their original versions.

Petri	Net	Robotic	Task	Plan	Representation:	Modelling,	Analysis	and	Execution 83

the fact that a communication event, when sent, is only received if the receiving robot, or
robots, are expecting it, otherwise the event is ignored. For each sending communication
model there will always be a receiving communication action model. As an example, see the
Action Executor level models of actions SendReady2Receive and RecvReady2Receive in
Figure 15a and Figure 15b respectively.

p.NOT_Sent_Ready2ReceiveBall

s.failure

s.success

init_ok

p.r.RobotNearOppGoal

 Reset

mechanism

init_reset

input output

p.Sent_Ready2ReceiveBall

(a) Action SendReady2Receive model.

p.r.HasBall

init_ok

init_reset

p.NOT_Got_Ready2ReceiveBall p.Got_Ready2ReceiveBall

 Reset mechanism

r.sucess

input output

(b) Action RecvReady2Receive model.

Fig. 15. Communication actions example.

Note that the running-conditions cannot be connected to the reset mechanism, as the token
must be able to pass from place input to place output regardless of the current state.
The two depicted actions can be used to synchronise a two-robot behaviour, by running one
in each robot.

7.3 Multi-Robot Task Plans
With the introduction of the communication models and communication actions, specifying a
multi-robot task is similar to the specification of individual robot tasks. The major difference
is that we need to use communication actions to ensure that the behaviours running during a
multi-robot task execution are synchronised. For now we are assuming that the choice of run-
ning a relational task was already done, and focus on the multi-robot task execution analysis.

7.4 Analysis of Multi-Robot tasks
The analysis of multi-robot tasks in this framework is similar to the individual robot tasks
case, adding the introduction of the communication models and actions. The difference relies
on the fact that one needs to prefix the place labels identifying the robot they belong to, so as to
distinguish between what is running in each robot, and the expansion of the communication
actions need an additional step. Since each robot can run the same communication action
at different times during the execution of a task plan, and the resulting Petri net used for
analysis is static, simply expanding the communication actions would not work. This needed
additional step corresponds to the creation of analysis versions of the communication actions,
which is implemented through the following items:

1. Move the transition associated with the communication from the receiving action model
to the sending action model. The receiving transition is merged back with the successful
sending transition, i.e, we obtain a single transition, located in the sending action, by
connecting the arcs previously connected to the receiving transition to the successful
sending transition;

2. Add the counter RUNNING_commAction to the receiving communication action with a
token. Counter places have the prefix “c”;

3. Make the added counter a running-condition of the sending communication action, con-
nected only with the successful transition associated with the communication event.

The introduced counter will indicate the number of instances of receiving actions running in
each robot and, most important, it will allow to track if a robot receiving action is running or
not. This counter will be treated like a predicate at the expansion phase, i.e., every counter
with the same label will be considered the same place.
With these analysis versions, the communicaton actions can be used anywhere in a robot task
model, allowing for any receiving action to pair with the associated sending action, indepen-
dently of where the communication actions appear in the task models. As an example, con-
sider again the communication actions SendReady2Receive and RecvReady2Receive in
a two robot setup, with their analysis versions depicted in Figure 16a and Figure 16b.
Naturally, it should be expected to have always at most one token in the counter, otherwise
multiple actions were sending the same message simultaneously. This property can be com-
puted during the analysis phase.

init_ok

p.r.R2_RobotNearOppGoal

p.r.R1_HasBall

c.r.R1_RUNNING_recvReady2ReceiveBall

init_reset

failure
success

p.R2_Sent_Ready2ReceiveBal

p.R1_Got_Ready2ReceiveBall

p.NOT_R2_Sent_Ready2ReceiveBall

p.NOT_R1_Got_Ready2ReceiveBall

input output

(a) Action SendReady2Receive model for analysis.

p.NOT_R1_Got_Ready2ReceiveBall

init_reset

init_ok

c.R1_RUNNING_recvReady2ReceiveBall

p.R1_Got_Ready2ReceiveBall

input

(b) Action RecvReady2Receive model for
analysis.

Fig. 16. Communication actions example.

Although the action places are always considered different places, regardless of their label,
these are also prefixed with the robot label, since different robots can have different action
models. During the expansion of the macro places for analysis, all the communication action
macro places are expanded into their analysis version instead of their original version. If we
have more than two robots, then a selection mechanism must be used to select to which robot,
or robots, the message is to be sent. The user never needs to see the analysis versions of the
actions, since these are used only internally for analysis, and are automatically created from
their original versions.

Autonomous	Agents84

7.5 Multi-Robot Task Example
To illustrate the application of the framework to the multi-robot case, we will consider a pass
example between two robots, the kicker and the receiver.
Given two tasks, coordinatedKick, for the kicker, and coordinatedReceive, for the
receiver, a two-robot PASS task plan corresponds to a single coordinatedPass relational
task, which consists of running both individual tasks in parallel, one in each robot. The key
here is to make sure that both individual tasks run synchronously, either by implicit or explicit
communication.
We assume that some higher level took the decision that the robots should commit with the
coordinated pass, and will focus on the task execution analysis, keeping the critical sections
synchronised.
For this example, we used the same list of predicates used in the single-robot example (see Sec-
tion 6), plus predicates Got_Ready2ReceiveBall and Sent_Ready2ReceiveBall, asso-
ciated to the communication actions. In terms of environment models we will use a ball po-
sition model (Figure 10a) and, per robot, one position model (Figure 10c), a lost ball model
(Figure 10b) and a ball proximity model (Figure 10d).
For the PASS relational task plan we used actions StandBy, Move2Ball (Figure 11a) and
CatchBall (Figure 8), used previously in the single robot example, plus the following ac-
tions:

Go2KickerPosture: The robot which has the ball, the kicker, moves to the kicker posture
to be ready to pass the ball (Figure 17b), which is always considered to be near its own
goal;

SendReady2Receive: The receiver acknowledges that it is ready to receive the ball (Figure
15a);

RecvReady2Receive: Waits for a communication from the receiver to know it is ready to
receive the ball (Figure 15b);

PassBall: Passes the ball to another robot. In this case we considered that passes are only
done from near its own goal or the midfield to near the opponent goal (Figure 17c);

Go2ReceiverPosture: The robot moves to a destination posture, which is good for receiv-
ing the ball. We considered the receiving posture to be always near the opponent goal
(Figure 17a).

All transitions were removed from the action Move2Ball model except transition s7, so as to
allow the robot to be able to capture the ball only when near the opponent goal.
Task CoordinatedKick is obtained by running actions Go2KickerPosture and
RecvReady2Receive in parallel, followed by action PassBall upon getting predi-
cates Ready2Pass and GotReady2Receive to true. Task CoordinatedReceive is
formed by a sequence of actions, starting with Go2ReceiverPosture, followed by
SendReady2Receive when predicate RobotNearOppGoal gets true, ending with action
CatchBall when SentReady2Receive gets true. Regarding communication, the rel-
evant actions for the coordinatedPass relational task are RecvReady2Receive and
SendReady2Receive, the two communication actions detailed previously. The Petri net
models of both tasks are depicted in Figure 18a and Figure 18b.
Given that our focus here is on the analysis of the execution of a multi-robot task, without
using yet selection or commitment mechanisms, we consider a scenario where both robots are
already set up for the execution of the pass. As such, the pass between the two robots can be
obtained through the PASS task plan depicted in Figure 19.

(a) Action Go2ReceiverPosture model.

(b) Action Go2KickerPosture model. (c) Action PassBall model.

Fig. 17. Action models used in the multi-robot example.

(a) Task CoordinatedKick model. (b) Task CoordinatedReceive model

Fig. 18. Task models used in the multi-robot example.

Fig. 19. PASS task plan.

Petri	Net	Robotic	Task	Plan	Representation:	Modelling,	Analysis	and	Execution 85

7.5 Multi-Robot Task Example
To illustrate the application of the framework to the multi-robot case, we will consider a pass
example between two robots, the kicker and the receiver.
Given two tasks, coordinatedKick, for the kicker, and coordinatedReceive, for the
receiver, a two-robot PASS task plan corresponds to a single coordinatedPass relational
task, which consists of running both individual tasks in parallel, one in each robot. The key
here is to make sure that both individual tasks run synchronously, either by implicit or explicit
communication.
We assume that some higher level took the decision that the robots should commit with the
coordinated pass, and will focus on the task execution analysis, keeping the critical sections
synchronised.
For this example, we used the same list of predicates used in the single-robot example (see Sec-
tion 6), plus predicates Got_Ready2ReceiveBall and Sent_Ready2ReceiveBall, asso-
ciated to the communication actions. In terms of environment models we will use a ball po-
sition model (Figure 10a) and, per robot, one position model (Figure 10c), a lost ball model
(Figure 10b) and a ball proximity model (Figure 10d).
For the PASS relational task plan we used actions StandBy, Move2Ball (Figure 11a) and
CatchBall (Figure 8), used previously in the single robot example, plus the following ac-
tions:

Go2KickerPosture: The robot which has the ball, the kicker, moves to the kicker posture
to be ready to pass the ball (Figure 17b), which is always considered to be near its own
goal;

SendReady2Receive: The receiver acknowledges that it is ready to receive the ball (Figure
15a);

RecvReady2Receive: Waits for a communication from the receiver to know it is ready to
receive the ball (Figure 15b);

PassBall: Passes the ball to another robot. In this case we considered that passes are only
done from near its own goal or the midfield to near the opponent goal (Figure 17c);

Go2ReceiverPosture: The robot moves to a destination posture, which is good for receiv-
ing the ball. We considered the receiving posture to be always near the opponent goal
(Figure 17a).

All transitions were removed from the action Move2Ball model except transition s7, so as to
allow the robot to be able to capture the ball only when near the opponent goal.
Task CoordinatedKick is obtained by running actions Go2KickerPosture and
RecvReady2Receive in parallel, followed by action PassBall upon getting predi-
cates Ready2Pass and GotReady2Receive to true. Task CoordinatedReceive is
formed by a sequence of actions, starting with Go2ReceiverPosture, followed by
SendReady2Receive when predicate RobotNearOppGoal gets true, ending with action
CatchBall when SentReady2Receive gets true. Regarding communication, the rel-
evant actions for the coordinatedPass relational task are RecvReady2Receive and
SendReady2Receive, the two communication actions detailed previously. The Petri net
models of both tasks are depicted in Figure 18a and Figure 18b.
Given that our focus here is on the analysis of the execution of a multi-robot task, without
using yet selection or commitment mechanisms, we consider a scenario where both robots are
already set up for the execution of the pass. As such, the pass between the two robots can be
obtained through the PASS task plan depicted in Figure 19.

(a) Action Go2ReceiverPosture model.

(b) Action Go2KickerPosture model. (c) Action PassBall model.

Fig. 17. Action models used in the multi-robot example.

(a) Task CoordinatedKick model. (b) Task CoordinatedReceive model

Fig. 18. Task models used in the multi-robot example.

Fig. 19. PASS task plan.

Autonomous	Agents86

7.6 Results
The setup used for the results consisted on placing both robots in the mid-
field area, with robot R1 holding the ball, resulting in the following initial
predicate state: NOT_BallOwnGoal, NOT_BallNearOwnGoal, BallMidField,
NOT_BallNearOppGoal, NOT_BallOppGoal, NOT_R1_RobotNearOwnGoal,
R1_RobotMidField, NOT_R1_RobotNearOppGoal, R1_SeeBall, R1_HasBall,
R1_CloseToBall, NOT_R1_Got_Ready2ReceiveBall, NOT_R2_RobotNearOwnGoal,
R2_RobotMidField, NOT_R2_RobotNearOppGoal, R2_SeeBall, NOT_R2_HasBall,
NOT_R2_CloseToBall, and NOT_R2_Sent_Ready2ReceiveBall.
We analysed the PASS task plan success probability by monitoring the number of tokens in
place action.R2_StandBy. Since robot R2 only reaches action StandBy if it was able to
successfully receive the ball, reaching this action means the PASS task plan was successful.
The first results were conducted considering a deterministic environment (by removing the
stochastic transitions from the environment models). Given that no failures were explicitely
included in the action models, the only failure in this case is the communication failure. As
such, the plan success probability should depend only on the relation between the communi-
cation failure and success rates, yielding:

PPlan success =
λcomm success

λcomm success + λcomm f ailure

Exp. Action Comm. Comm. Plan success
success rates success rates failure rates probability
1 1 1 1 0.50
2 1 1 10 0.09
3 1 10 1 0.91
4 1 10 10 0.50
5 10 10 10 0.50

Table 2. Plan success probability vs transition rates with deterministic environment.

Table 2 shows the results obtained with different transitions rates for this setup, confirm-
ing the above statement. The graph showing the expected number of tokens in place
action.R2_StandBy over time is shown in Figure 20 for experiments 1, 4 and 5. This graph
shows that, although the stationary plan success probability only depends on the communi-
cation rates, increasing the success transition rates leads to a performance improvement in the
short term.
Next we introduced additional failures by including the full models for HasBall and
CloseToBall environment models for each robot, as shown in Figure 10b and Figure 10d.
The ball position model was kept deterministic, without stochastic timed transitions. We
tested this setup with different transition rates, obtaining the results show in Table 3.
In this case, increasing the communication success also increases the plan success probability
as expected, but only to a certain point, as experiments 5 and 6 show. Only by increasing the
remaining action transitions success rate can we further increase the plan success probability.
In experiment 7, the success rates are much higher than the failure rates, leading to an almost
100% success probability.

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time [time units]

P
ro

ba
bi

lit
y(

t>
t’)

Transient analysis using TimeNET for #action.R2_StandBy

λAS=1, λCS=1, λCF=1

λAS = 1, λCS=10, λCF=10

λAS=10, λCS=10, λCF=10

Fig. 20. PASS task plan success probability over time for different transition rates.

Exp. Env. rates Action Comm. Comm. Plan success
HasBall CloseToBall success rates success rates failure rates probability
1 0.2 0.1 1 1 1 0.32
2 0.2 0.1 1 1 10 0.06
3 0.2 0.1 1 10 1 0.62
4 0.2 0.1 1 10 10 0.34
5 0.2 0.1 1 100 0.1 0.69
6 0.2 0.1 1 10000 0.0001 0.69
7 0.2 0.1 10 10000 0.0001 0.96

Table 3. Plan success probability vs transition rates with probabilistic environment.

Qualitatively we could determine, like in the single-robot example, that the task is safe, and
that the predicate places form place invariants. Furthermore, as expected, both setups end
always in deadlock, given that the tasks are sequential.

8. Conclusions and Future Directions

Petri nets provide a practical and intuitive way of modelling robotic tasks and associated
components, being also appropriate to monitor the execution of tasks given their graphical
nature. The fact that a GSPN is equivalent to a Markov chain brings an additional advantage
by allowing the use of currently available tools and techniques to extract important a priori
information about a given task.
Being able to model the actions more thoroughly at a lower level allows for mores realistic
models, without compromising the analysis possibilities. Furthermore we can create all the
models separately and build the task plan by creating a network of actions. This task plan can
be ran directly on the robots for execution purposes and, for analysis purposes, we compose
all the models that were designed separately onto one single Petri net, and analyse that net.
The introduction of communication models allowed the extension of the framework to multi-
robot tasks, enabling a priori extraction of qualitative and quantitative properties of multi-
robot tasks. Different communication models enable the study of the impact of a range of
communication problems on the task success. We are currently improving the communication

Petri	Net	Robotic	Task	Plan	Representation:	Modelling,	Analysis	and	Execution 87

7.6 Results
The setup used for the results consisted on placing both robots in the mid-
field area, with robot R1 holding the ball, resulting in the following initial
predicate state: NOT_BallOwnGoal, NOT_BallNearOwnGoal, BallMidField,
NOT_BallNearOppGoal, NOT_BallOppGoal, NOT_R1_RobotNearOwnGoal,
R1_RobotMidField, NOT_R1_RobotNearOppGoal, R1_SeeBall, R1_HasBall,
R1_CloseToBall, NOT_R1_Got_Ready2ReceiveBall, NOT_R2_RobotNearOwnGoal,
R2_RobotMidField, NOT_R2_RobotNearOppGoal, R2_SeeBall, NOT_R2_HasBall,
NOT_R2_CloseToBall, and NOT_R2_Sent_Ready2ReceiveBall.
We analysed the PASS task plan success probability by monitoring the number of tokens in
place action.R2_StandBy. Since robot R2 only reaches action StandBy if it was able to
successfully receive the ball, reaching this action means the PASS task plan was successful.
The first results were conducted considering a deterministic environment (by removing the
stochastic transitions from the environment models). Given that no failures were explicitely
included in the action models, the only failure in this case is the communication failure. As
such, the plan success probability should depend only on the relation between the communi-
cation failure and success rates, yielding:

PPlan success =
λcomm success

λcomm success + λcomm f ailure

Exp. Action Comm. Comm. Plan success
success rates success rates failure rates probability
1 1 1 1 0.50
2 1 1 10 0.09
3 1 10 1 0.91
4 1 10 10 0.50
5 10 10 10 0.50

Table 2. Plan success probability vs transition rates with deterministic environment.

Table 2 shows the results obtained with different transitions rates for this setup, confirm-
ing the above statement. The graph showing the expected number of tokens in place
action.R2_StandBy over time is shown in Figure 20 for experiments 1, 4 and 5. This graph
shows that, although the stationary plan success probability only depends on the communi-
cation rates, increasing the success transition rates leads to a performance improvement in the
short term.
Next we introduced additional failures by including the full models for HasBall and
CloseToBall environment models for each robot, as shown in Figure 10b and Figure 10d.
The ball position model was kept deterministic, without stochastic timed transitions. We
tested this setup with different transition rates, obtaining the results show in Table 3.
In this case, increasing the communication success also increases the plan success probability
as expected, but only to a certain point, as experiments 5 and 6 show. Only by increasing the
remaining action transitions success rate can we further increase the plan success probability.
In experiment 7, the success rates are much higher than the failure rates, leading to an almost
100% success probability.

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time [time units]

P
ro

ba
bi

lit
y(

t>
t’)

Transient analysis using TimeNET for #action.R2_StandBy

λAS=1, λCS=1, λCF=1

λAS = 1, λCS=10, λCF=10

λAS=10, λCS=10, λCF=10

Fig. 20. PASS task plan success probability over time for different transition rates.

Exp. Env. rates Action Comm. Comm. Plan success
HasBall CloseToBall success rates success rates failure rates probability
1 0.2 0.1 1 1 1 0.32
2 0.2 0.1 1 1 10 0.06
3 0.2 0.1 1 10 1 0.62
4 0.2 0.1 1 10 10 0.34
5 0.2 0.1 1 100 0.1 0.69
6 0.2 0.1 1 10000 0.0001 0.69
7 0.2 0.1 10 10000 0.0001 0.96

Table 3. Plan success probability vs transition rates with probabilistic environment.

Qualitatively we could determine, like in the single-robot example, that the task is safe, and
that the predicate places form place invariants. Furthermore, as expected, both setups end
always in deadlock, given that the tasks are sequential.

8. Conclusions and Future Directions

Petri nets provide a practical and intuitive way of modelling robotic tasks and associated
components, being also appropriate to monitor the execution of tasks given their graphical
nature. The fact that a GSPN is equivalent to a Markov chain brings an additional advantage
by allowing the use of currently available tools and techniques to extract important a priori
information about a given task.
Being able to model the actions more thoroughly at a lower level allows for mores realistic
models, without compromising the analysis possibilities. Furthermore we can create all the
models separately and build the task plan by creating a network of actions. This task plan can
be ran directly on the robots for execution purposes and, for analysis purposes, we compose
all the models that were designed separately onto one single Petri net, and analyse that net.
The introduction of communication models allowed the extension of the framework to multi-
robot tasks, enabling a priori extraction of qualitative and quantitative properties of multi-
robot tasks. Different communication models enable the study of the impact of a range of
communication problems on the task success. We are currently improving the communication

Autonomous	Agents88

action models to allow modelling broadcast type messages, which will allow for easier multi-
robot tasks (with any number of robots) modelling.
Tests were performed using simulated robotic soccer scenarios which showed the applicability
of the framework for both single-robot and multi-robot tasks. Qualitative properties, such as
deadlock and safeness, and quantitative properties, such success probability over time, of the
task were obtained from the full Petri net model.
In order to fully enable the use of the framework for multi-robot tasks, one still needs to
implement selection and commitment mechanism. These mechanisms already exist in the
literature (Cohen & Levesque, 1991; Palamara et al., 2009; van der Vecht & Lima, 2005) and we
are working on incorporating them in our models. When analysing the complete models we
will also be able to extract properties concerning the selection and commitment maintenance.
We are currently implementing an identification algorithm which will allow building the ac-
tion and environment models from real world data, leading to more realistic models. Fur-
thermore, we plan to introduce observation models, allowing the use of the framework under
scenarios without full observability.

Acknowledgements

This work was supported by the Portuguese Fundação para a Ciência e Tecnologia under
under grant SFRH/BD/ 12707/2003 and ISR/IST pluriannual funding through the PIDDAC
Program funds.

9. References

Akharware, N. (2005). PIPE2: Platform Independent Petri Net Editor, Master’s thesis, Imperial
College of Science, Technology and Medicine, University of London.

Barbosa, M., Ramos, N. & Lima, P. (2007). Mermaid - multiple-robot middleware for intelligent
decision-making, IAV2007 - 6th IFAC Symposium on Intelligent Autonomous Vehicles.

Bernardinello, L. & Cindio, F. D. (1992). A survey of basic net models and modular net classes,
Advances in Petri Nets 1992, The DEMON Project, Springer, pp. 304–351.

Cohen, P. R. & Levesque, H. J. (1991). Teamwork, Noûs 25(4): 487–512.
Damas, B. D. & Lima, P. U. (2004). Stochastic Discrete Event Model of a Multi-Robot Team

Playing an Adversarial Game, Proceedings of the 5th IFAC/EURON Symposium on In-
telligent Autonomous Vehicles.

Dominguez-Brito, A. C., Andersson, M. & Christensen, H. I. (2000). A Software Architecture
for Programming Robotic Systems based on the Discrete Event System Paradigm,
Technical Report CVAP244, ISRN KTH/NA/P–00/13–SE, Centre for Autonomous Sys-
tems, KTH (Royal Institute of Technology).

Espiau, B., Kapellos, K., Jourdan, M. & Simon, D. (1995). On the Validation of Robotics Con-
trol Systems Part I: High Level Specification and Formal Verification, Technical Report
2719, INRIA.

Kosecka, J., Christensen, H. I. & Bajcsy, R. (1997). Experiments in Behaviour Composition,
Robotics and Autonomous Systems 19: 287–298.

Montano, L., García, F. J. & Villaroel, J. L. (2000). Using the Time Petri Net Formalism for
Specification, Validation, and Code Generation in Robot-Control Applications, The
International Journal of Robotics Research 19(1): 59–76.

Murata, T. (1989). Petri nets: Properties, analysis and applications, Proceedings of the IEEE
77(4): 541–580.

Palamara, P. F., Ziparo, V. A., Iocchi, L., Nardi, D. & Lima, P. (2009). Teamwork design based
on petri net plans, pp. 200–211.

Petri, C. A. (1966). Kommunikation mit automaten, Technical report. English translation.
Röck, A. & Kresman, R. (2006). On Petri nets and predicate-transition nets, Proceedings of the

International Conference on Software Engineering Research and Practice & Conference on
Programming Languages and Compilers, SERP 2006, pp. 903–909.

van der Vecht, B. & Lima, P. U. (2005). Formulation and Implementation of Relational Be-
haviours for Multi-robot Cooperative Systems, Proceedings of RoboCup-2004: Robot
Soccer World Cup VIII, Springer-Verlag, pp. 516–523.

Viswanadham, N. & Narahari, Y. (1992). Performance Modeling of Automated Manufacturing
Systems, Prentice Hall.

Zimmermann, A. (2001). TIMENET - a software tool for the performability evaluation with
stochastic petri nets.

Ziparo, V. A. & Iocchi, L. (2006). Petri net plans, Proceedings of the Fourth International Workshop
on Modelling of Objects, Components, and Agents (MOCA’06), pp. 267–290.

Petri	Net	Robotic	Task	Plan	Representation:	Modelling,	Analysis	and	Execution 89

action models to allow modelling broadcast type messages, which will allow for easier multi-
robot tasks (with any number of robots) modelling.
Tests were performed using simulated robotic soccer scenarios which showed the applicability
of the framework for both single-robot and multi-robot tasks. Qualitative properties, such as
deadlock and safeness, and quantitative properties, such success probability over time, of the
task were obtained from the full Petri net model.
In order to fully enable the use of the framework for multi-robot tasks, one still needs to
implement selection and commitment mechanism. These mechanisms already exist in the
literature (Cohen & Levesque, 1991; Palamara et al., 2009; van der Vecht & Lima, 2005) and we
are working on incorporating them in our models. When analysing the complete models we
will also be able to extract properties concerning the selection and commitment maintenance.
We are currently implementing an identification algorithm which will allow building the ac-
tion and environment models from real world data, leading to more realistic models. Fur-
thermore, we plan to introduce observation models, allowing the use of the framework under
scenarios without full observability.

Acknowledgements

This work was supported by the Portuguese Fundação para a Ciência e Tecnologia under
under grant SFRH/BD/ 12707/2003 and ISR/IST pluriannual funding through the PIDDAC
Program funds.

9. References

Akharware, N. (2005). PIPE2: Platform Independent Petri Net Editor, Master’s thesis, Imperial
College of Science, Technology and Medicine, University of London.

Barbosa, M., Ramos, N. & Lima, P. (2007). Mermaid - multiple-robot middleware for intelligent
decision-making, IAV2007 - 6th IFAC Symposium on Intelligent Autonomous Vehicles.

Bernardinello, L. & Cindio, F. D. (1992). A survey of basic net models and modular net classes,
Advances in Petri Nets 1992, The DEMON Project, Springer, pp. 304–351.

Cohen, P. R. & Levesque, H. J. (1991). Teamwork, Noûs 25(4): 487–512.
Damas, B. D. & Lima, P. U. (2004). Stochastic Discrete Event Model of a Multi-Robot Team

Playing an Adversarial Game, Proceedings of the 5th IFAC/EURON Symposium on In-
telligent Autonomous Vehicles.

Dominguez-Brito, A. C., Andersson, M. & Christensen, H. I. (2000). A Software Architecture
for Programming Robotic Systems based on the Discrete Event System Paradigm,
Technical Report CVAP244, ISRN KTH/NA/P–00/13–SE, Centre for Autonomous Sys-
tems, KTH (Royal Institute of Technology).

Espiau, B., Kapellos, K., Jourdan, M. & Simon, D. (1995). On the Validation of Robotics Con-
trol Systems Part I: High Level Specification and Formal Verification, Technical Report
2719, INRIA.

Kosecka, J., Christensen, H. I. & Bajcsy, R. (1997). Experiments in Behaviour Composition,
Robotics and Autonomous Systems 19: 287–298.

Montano, L., García, F. J. & Villaroel, J. L. (2000). Using the Time Petri Net Formalism for
Specification, Validation, and Code Generation in Robot-Control Applications, The
International Journal of Robotics Research 19(1): 59–76.

Murata, T. (1989). Petri nets: Properties, analysis and applications, Proceedings of the IEEE
77(4): 541–580.

Palamara, P. F., Ziparo, V. A., Iocchi, L., Nardi, D. & Lima, P. (2009). Teamwork design based
on petri net plans, pp. 200–211.

Petri, C. A. (1966). Kommunikation mit automaten, Technical report. English translation.
Röck, A. & Kresman, R. (2006). On Petri nets and predicate-transition nets, Proceedings of the

International Conference on Software Engineering Research and Practice & Conference on
Programming Languages and Compilers, SERP 2006, pp. 903–909.

van der Vecht, B. & Lima, P. U. (2005). Formulation and Implementation of Relational Be-
haviours for Multi-robot Cooperative Systems, Proceedings of RoboCup-2004: Robot
Soccer World Cup VIII, Springer-Verlag, pp. 516–523.

Viswanadham, N. & Narahari, Y. (1992). Performance Modeling of Automated Manufacturing
Systems, Prentice Hall.

Zimmermann, A. (2001). TIMENET - a software tool for the performability evaluation with
stochastic petri nets.

Ziparo, V. A. & Iocchi, L. (2006). Petri net plans, Proceedings of the Fourth International Workshop
on Modelling of Objects, Components, and Agents (MOCA’06), pp. 267–290.

Autonomous	Agents90

Effective	Planning	for	Conflicting	Situations	for	Ubiquitous	Sensor	Network	Environments 91

Effective	 Planning	 for	 Conflicting	 Situations	 for	 Ubiquitous	 Sensor	
Network	Environments

Toshiharu	Sugawara,	Satoshi	Kurihara,	Toshio	Hirotsu,	Kensuke	Fukuda	and	Toshihiro	
Takada

X

Effective Planning for Conflicting Situations for

Ubiquitous Sensor Network Environments

Toshiharu Sugawara1 Satoshi Kurihara2 Toshio Hirotsu3
Kensuke Fukuda4 and Toshihiro Takada5

1Waseda University,
2Osaka University,
3Hosei University,

4National Institute of Informatics,
5NTT Communication Science Laboratories,

Japan

1. Introduction

Applications of sensor networks and ubiquitous computing have received attention. They
can provide many kinds of important services for supporting daily and social activities in
home, schools, offices and public spaces in the future (Kurihara, 2008). However, to realize
these kinds of applications, a number of new technologies in AI and multi-agent systems
(MAS) are also required because many devices and control programs are concurrently work
to achieve their goals in cooperation with other ones. These works arise according to the
human requirements based on their individual activities. In order to achieve these required
goals, each agent has to create the plan (means-end analysis) and then performs it. However,
the plan often conflict with those that are being created, already being scheduled, and
executed by other agents because of the limited resources. Furthermore, since the human’s
activities are usually real-time with deadline, the agent must also be able to complete its
planning and resolution of these conflicts within a reasonable time to have an acceptable
quality plan. This means that both efficient planning and sophisticated conflict resolution
are strongly required.
We adopt hierarchical planning (for example, see (Erol & Nau, 1994; Sacerdoti, 1974) using
the decision-theoretic planning approach (Goldwin, & Simmons, 1998) for efficient planning
but it is not trivial to apply hierarchical planning to MAS. In hierarchical planning,
appropriate (abstract) plans are selected level by level to maximize the utility U(p), where p
is the expected final plan comprising a sequence of primitive actions. However, in the MAS
context, conflicts between agents affect the efficiency and quality of resulting plans. When a
conflict is found at lower levels, an additional sophisticated process for avoiding it (conflict
resolution) must be invoked and some extra actions (such as waiting for synchronization and
detouring) may have to be added to the plan. The conflict resolution process may become
costly or fail. Even a single conflict, if it is difficult to resolve, will result in a plan with

5

Autonomous	Agents92

considerably lower quality. As a result, in multi-agent systems, the second- or third-best
plans may result in better overall performance.
The objective of our research is to enable agents, using reinforcement learning, to predict
which tasks in an abstract plan will conflict with other agents' plans at a lower level with
higher probability and either involve a costly conflict resolution process and/or result in a
low-quality plan after it has been resolved. We emphasize that the appearances of conflicts
strongly depend on the resource structures of the environments of the sensor-network
applications. This suggests that the learning is mandatory.
Our basic idea is threefold, conflict patterns, screening level and conflict discount. First, we will
introduce conflict patterns (CP) at a certain abstract level called the screening level (SL). The
screening level is a one of intermediary level of the hierarchical model at which the conflicts
of generating plans are predicted. The possible conflicts are stored as conflict patterns to
specify the situations where conflicts will occur with high probabilities if the agents refine
the current plan to the lower levels. The conflict discount is a negative utility that
cumulatively predicts the probability of conflicts in the subsequent refinement process, the
cost of resolutions, and the quality/performance of the resulting plans on the basis of CPs in
the plans at the screening level and past experience. The conflict discount is calculated and
updated by using statistically learned expected values or by reinforcement learning, so that
the agents select the appropriate refinement at the SL.
Note that we assume that the initial utility is good for selecting plans for single-agent cases.
This utility may lead to acceptable but minimum quality plans after conflict resolution in the
MAS context. Thus, agents learn the conflict discount appropriate for the environment in
order to select better SL plans.
In this chapter, we formally define conflict patterns and discuss the estimation of their
conflict discounts. We then introduce the notion of sub-conflict patterns for avoiding
redundant calculations of conflict discounts and reducing memory space. We also clarify the
distributed version of the planning framework with our conflict estimation, which is an
extension of that in (Sugawara et al., 2005). Then we present an experimental evaluation of
the efficiency of plans generated by our method for a simulated laboratory room. This
chapter is organized as follows: First, we discuss the issue addressed here and the planning
framework used in our application systems. We then explain the process of conflict
detection and resolution. Following that, we introduce the use of conflict patterns to classify
situations involving conflicts with other agents' plans. Then, the experimental results to
evaluate our approach are presented. We show that our proposed planning strategy makes
agent’s planning more efficient in the situation where conflicts are predicted. Finally, we
cover related work and offer some concluding remarks.

2. Conflict estimation in hierarchical planning

In hierarchical planning, plans are generated using an abstract hierarchy of the domain
model, which includes tasks and resources in an abstract form. Initial states and goals are
first described in the most abstract model, and a number of task sequences are generated to
achieve these goals. One of the sequences is then selected according to a particular planning

strategy (A utility is used in the case of the decision-theoretic planning.1

 Normal utilities for making efficient or high-quality plans do not usually take into account
possible conflicts with other agents. As a result, although they can create acceptable plans
when there is no interference between plans, they might not be able to do so when there is
interference. Furthermore, in applications where real-time performance is stipulated, it is
preferable that agents predict which conflicts will vanish or be easy or difficult to resolve
during the remainder of the planning period. It is important, therefore, to provide another
utility for plan selection when there is the possibility of conflict. However, determining
what the conflicts are and which tasks easily cause them is a function of the location of
scarce or heavily used resources and the type of agent; thus, the outcome strongly depends
on the situation and environment where the sensor-network system is deployed. This type

), and each task in
the sequence is further refined into task sequences in the less-abstract model. This refine-
and-select process is iterated until all tasks have been refined to primitive tasks in the lowest
model. In general, while abstract (higher-level) models are simple and thus do not contain
complete information, they are appropriate for understanding the global and long-term
picture of activities. Naturally, the lower-layer models are more informative and
complicated, so they are used for detailed descriptions of local and sectional plans.
 Let’s consider our laboratory room shown in Figure 1 that will be the example environment
of the experiments in this paper. In this figure, there are a number of hierarchical models of
the room; the model at level 0 is the most abstract and the one at level 3 is the most concrete
(so primitive). The plan at a certain level is generated based on the corresponding model.
Initial states and goals are first described in the most abstract (or uppermost) model, and a
number of task sequences are generated to achieve these goals in this model. (An example of
the task hierarchy established in accordance with the model hierarchy is shown in Figure 2.)
This plan generation is usually based on the descriptive information represented in the
corresponding model. One of the sequences is selected according to a particular planning
strategy (the utility is used in the case of DTP), and then each task in the sequence is further
refined, that is, the sub-task sequences in the less-abstract model for achieving the task are
generated. These sequences are called refinements of the task.
Actual conflicts are identified when all tasks have been expanded into primitive tasks, since
the required amount of resources and time needed for executing the plan are precisely
determined at this level. This may not prevent an agent from investigating the possibility of
conflicts at an abstract level, however. For example, if a certain room is roughly modelled as
a single object at an abstract level such as the level-0 model in Figure 1 and two agents have
plans to work in this room at the same time, they can resolve this possible conflict by one
agent deciding to work at another time. However, this conflict may not occur after the plans
have been expanded into primitive ones, because it might turn out that the agents are able to
work at different places in the room. In general, the process of conflict detection and
resolution in abstract layers is simple because its domain model and related operators are
simple. However, it usually results in redundant and inefficient plans.

1 An agent selects the plan that may lead to the highest utility. However, the utility value is
determined from the primitive task/plan, so the utility of a non-primitive task/plan is
expressed as a range calculated according to the possible lower-level refined plans. It has
been reported that agents should choose the plan that contains the highest utility and
expand it to the next layer for effective planning (Goldwin & Simmons, 1998).

Effective	Planning	for	Conflicting	Situations	for	Ubiquitous	Sensor	Network	Environments 93

considerably lower quality. As a result, in multi-agent systems, the second- or third-best
plans may result in better overall performance.
The objective of our research is to enable agents, using reinforcement learning, to predict
which tasks in an abstract plan will conflict with other agents' plans at a lower level with
higher probability and either involve a costly conflict resolution process and/or result in a
low-quality plan after it has been resolved. We emphasize that the appearances of conflicts
strongly depend on the resource structures of the environments of the sensor-network
applications. This suggests that the learning is mandatory.
Our basic idea is threefold, conflict patterns, screening level and conflict discount. First, we will
introduce conflict patterns (CP) at a certain abstract level called the screening level (SL). The
screening level is a one of intermediary level of the hierarchical model at which the conflicts
of generating plans are predicted. The possible conflicts are stored as conflict patterns to
specify the situations where conflicts will occur with high probabilities if the agents refine
the current plan to the lower levels. The conflict discount is a negative utility that
cumulatively predicts the probability of conflicts in the subsequent refinement process, the
cost of resolutions, and the quality/performance of the resulting plans on the basis of CPs in
the plans at the screening level and past experience. The conflict discount is calculated and
updated by using statistically learned expected values or by reinforcement learning, so that
the agents select the appropriate refinement at the SL.
Note that we assume that the initial utility is good for selecting plans for single-agent cases.
This utility may lead to acceptable but minimum quality plans after conflict resolution in the
MAS context. Thus, agents learn the conflict discount appropriate for the environment in
order to select better SL plans.
In this chapter, we formally define conflict patterns and discuss the estimation of their
conflict discounts. We then introduce the notion of sub-conflict patterns for avoiding
redundant calculations of conflict discounts and reducing memory space. We also clarify the
distributed version of the planning framework with our conflict estimation, which is an
extension of that in (Sugawara et al., 2005). Then we present an experimental evaluation of
the efficiency of plans generated by our method for a simulated laboratory room. This
chapter is organized as follows: First, we discuss the issue addressed here and the planning
framework used in our application systems. We then explain the process of conflict
detection and resolution. Following that, we introduce the use of conflict patterns to classify
situations involving conflicts with other agents' plans. Then, the experimental results to
evaluate our approach are presented. We show that our proposed planning strategy makes
agent’s planning more efficient in the situation where conflicts are predicted. Finally, we
cover related work and offer some concluding remarks.

2. Conflict estimation in hierarchical planning

In hierarchical planning, plans are generated using an abstract hierarchy of the domain
model, which includes tasks and resources in an abstract form. Initial states and goals are
first described in the most abstract model, and a number of task sequences are generated to
achieve these goals. One of the sequences is then selected according to a particular planning

strategy (A utility is used in the case of the decision-theoretic planning.1

 Normal utilities for making efficient or high-quality plans do not usually take into account
possible conflicts with other agents. As a result, although they can create acceptable plans
when there is no interference between plans, they might not be able to do so when there is
interference. Furthermore, in applications where real-time performance is stipulated, it is
preferable that agents predict which conflicts will vanish or be easy or difficult to resolve
during the remainder of the planning period. It is important, therefore, to provide another
utility for plan selection when there is the possibility of conflict. However, determining
what the conflicts are and which tasks easily cause them is a function of the location of
scarce or heavily used resources and the type of agent; thus, the outcome strongly depends
on the situation and environment where the sensor-network system is deployed. This type

), and each task in
the sequence is further refined into task sequences in the less-abstract model. This refine-
and-select process is iterated until all tasks have been refined to primitive tasks in the lowest
model. In general, while abstract (higher-level) models are simple and thus do not contain
complete information, they are appropriate for understanding the global and long-term
picture of activities. Naturally, the lower-layer models are more informative and
complicated, so they are used for detailed descriptions of local and sectional plans.
 Let’s consider our laboratory room shown in Figure 1 that will be the example environment
of the experiments in this paper. In this figure, there are a number of hierarchical models of
the room; the model at level 0 is the most abstract and the one at level 3 is the most concrete
(so primitive). The plan at a certain level is generated based on the corresponding model.
Initial states and goals are first described in the most abstract (or uppermost) model, and a
number of task sequences are generated to achieve these goals in this model. (An example of
the task hierarchy established in accordance with the model hierarchy is shown in Figure 2.)
This plan generation is usually based on the descriptive information represented in the
corresponding model. One of the sequences is selected according to a particular planning
strategy (the utility is used in the case of DTP), and then each task in the sequence is further
refined, that is, the sub-task sequences in the less-abstract model for achieving the task are
generated. These sequences are called refinements of the task.
Actual conflicts are identified when all tasks have been expanded into primitive tasks, since
the required amount of resources and time needed for executing the plan are precisely
determined at this level. This may not prevent an agent from investigating the possibility of
conflicts at an abstract level, however. For example, if a certain room is roughly modelled as
a single object at an abstract level such as the level-0 model in Figure 1 and two agents have
plans to work in this room at the same time, they can resolve this possible conflict by one
agent deciding to work at another time. However, this conflict may not occur after the plans
have been expanded into primitive ones, because it might turn out that the agents are able to
work at different places in the room. In general, the process of conflict detection and
resolution in abstract layers is simple because its domain model and related operators are
simple. However, it usually results in redundant and inefficient plans.

1 An agent selects the plan that may lead to the highest utility. However, the utility value is
determined from the primitive task/plan, so the utility of a non-primitive task/plan is
expressed as a range calculated according to the possible lower-level refined plans. It has
been reported that agents should choose the plan that contains the highest utility and
expand it to the next layer for effective planning (Goldwin & Simmons, 1998).

Autonomous	Agents94

of information cannot be provided a priori during the design time. Therefore, agents have to
learn an additional utility for MAS contexts.

Fig. 1. Example of a hierarchical description.

Fig. 2. Hierarchical task structure based on the hierarchical model.

3. Planning at the screening level

3.1 Planning architecture
In our planning architecture, agents first exchange only the presently being generated,
scheduled and executed plans described in a certain abstract-level model, called the
screening level (SL). We assume that the plans at this level are simpler than ones at the
primitive level but are enough to classify the conflicting situations. The SL plans presently
scheduled or being executed are called SL-valid plans, and the SL plans that are currently
being generated (so are pending) are called SL-pending plans.
When agent ai starts to create its plan for this environment, it first generates a number of SL
plans (from the abstract-level plan) and tentatively selects one of them (using conventional
utility). It then requests SL-valid and SL-pending plans from other agents to investigate the
possible conflicts between ai's new plan and other plans, by using an estimation based on the
utility with the learned conflict discount as described in Section 4. According to this result, ai
selects one of the SL plans to refine further. This plan is marked as `SL-pending'. If ai is
requested to send its plans during this process, it immediately notifies the request for that it
is `SL planning' and sends the SL-pending plan right after it is determined. Agent ai then
waits for a short while for other unreceived plans; if it receives no other SL plans that have
high conflict discounts, it proceeds to the next stage described below. Otherwise, one of the
agents selects another SL plan instead of the current SL-pending plan; this may slow down
the system in an extremely busy environment, so a tailored method for this issue will need
to be developed in the future.
For further conflicts analysis, agent ai requests primitive plans only from the agents whose
plans are predicted to conflict with ai 's SL plan. Then ai modifies the primitive plan to
eliminate the detected conflicts. If conflict discount is sufficiently learned, the cost of conflict
resolution is relatively low and the resulting plan is acceptable. When ai completes a
primitive plan without conflicts, the plan is scheduled or executed immediately; and its SL-
plan is marked `SL-valid'. Section 4 discusses how ai learns to predict conflicts at the SL and
how the utilities with a conflict discount are estimated.

Effective	Planning	for	Conflicting	Situations	for	Ubiquitous	Sensor	Network	Environments 95

of information cannot be provided a priori during the design time. Therefore, agents have to
learn an additional utility for MAS contexts.

Fig. 1. Example of a hierarchical description.

Fig. 2. Hierarchical task structure based on the hierarchical model.

3. Planning at the screening level

3.1 Planning architecture
In our planning architecture, agents first exchange only the presently being generated,
scheduled and executed plans described in a certain abstract-level model, called the
screening level (SL). We assume that the plans at this level are simpler than ones at the
primitive level but are enough to classify the conflicting situations. The SL plans presently
scheduled or being executed are called SL-valid plans, and the SL plans that are currently
being generated (so are pending) are called SL-pending plans.
When agent ai starts to create its plan for this environment, it first generates a number of SL
plans (from the abstract-level plan) and tentatively selects one of them (using conventional
utility). It then requests SL-valid and SL-pending plans from other agents to investigate the
possible conflicts between ai's new plan and other plans, by using an estimation based on the
utility with the learned conflict discount as described in Section 4. According to this result, ai
selects one of the SL plans to refine further. This plan is marked as `SL-pending'. If ai is
requested to send its plans during this process, it immediately notifies the request for that it
is `SL planning' and sends the SL-pending plan right after it is determined. Agent ai then
waits for a short while for other unreceived plans; if it receives no other SL plans that have
high conflict discounts, it proceeds to the next stage described below. Otherwise, one of the
agents selects another SL plan instead of the current SL-pending plan; this may slow down
the system in an extremely busy environment, so a tailored method for this issue will need
to be developed in the future.
For further conflicts analysis, agent ai requests primitive plans only from the agents whose
plans are predicted to conflict with ai 's SL plan. Then ai modifies the primitive plan to
eliminate the detected conflicts. If conflict discount is sufficiently learned, the cost of conflict
resolution is relatively low and the resulting plan is acceptable. When ai completes a
primitive plan without conflicts, the plan is scheduled or executed immediately; and its SL-
plan is marked `SL-valid'. Section 4 discusses how ai learns to predict conflicts at the SL and
how the utilities with a conflict discount are estimated.

Autonomous	Agents96

We focus on applications where the same or similar plans are frequently reproduced.
Examples of target applications are planning for the intelligent behaviours in sensor-
network and ubiquitous-computing systems with many devices, such as sensors, effectors
and robots (Figure 1), where agents reside in these devices to control them (Takada et al.,
2003). Examples of application scenarios are described in (Kurihara et al., 2005). In this sort
of application, e.g., robots moving in a room and assisting in people's daily activities, certain
actions are repeated. We assume that other plans that are already scheduled or being
executed are not modified (at least, the plans that have already been approved should be
preferred) in the current implementation. Often this restricts the quality of the resulting
plan. Our aim, however, is to select the most appropriate SL plan in a timely manner. If all
of the plans generated at the SL appear to have high-discount conflicts, the agent can
backtrack and select another plan at the SL or at a higher level; the agent still creates an
abstract plan, which is simpler than creating a useless primitive plan, so we believe that the
cost is not so high.

3.2 Conflict detection at screening level
The agent detects possible conflicts, according to resource and task information at the SL, by
identifying the possibility of whether multiple plans will use the same resources, such as
locations (e.g., squares in Figure 1). An example is illustrated in Figure 3, for which the SL is
level 2 in Figure 1; a square at this SL (specified by a pair of lower-case letters) corresponds
to 4x4 squares in the primitive model (A square in the primitive level is specified by a pair of
positive integers.). In Figure 3, the agent can suggest that task tl = move(cd

→ dd) in the new
plan may conflict with task t'n = move(cd

→ bd) in the SL-valid plan, where move(cd

→ dd)
is the SL plan expressing the agent's movement from somewhere in area (c, d) to area (d, d).
This conflict can be expected if some squares in area (c, d) can be simultaneously occupied
by two agents during a certain time interval.

Fig. 3. Example of a detected conflict.

An agent has to take into account time relationships between tasks in the plans. The
duration of each task in the SL-valid plans has already been determined, but not that of the

new plan. Thus, it uses the expected average duration of each SL task. This value is initially
given as part of the SL model; for example, move(cd

→ bd) takes four ticks if agents (that is,
robots) can move to the next small square in a tick. The expected duration is then
statistically adjusted according to the generated primitive plans induced from this SL task.
The questions of when and where conflicts likely occur and whether their resolutions are
difficult depend upon the system's environment. Suppose that three agents want to pass
through area (b, d). In the SL model, this area (place is a resource) is expressed as a single
entity, so conflicts can be expected. However, this area has enough room for three agents if
each agent occupies a small square at the primitive level; hence, the conflicts might not
actually occur or might be easily resolved. However, in (c, d) where agents move only left or
right, there is not enough room for three agents. Thus, it seems probable that the agents'
plans will have conflicts there. Of course, this probability is influenced by the temporal
relationships of the agents entering area (c, d). If a conflict is detected, one of the agents
must step out of the other agent's way and wait for it to pass by before resuming its
movement.

Method Description

Synchronizat
ion

 Stop until another agent performing a task that requires a needed
resource finishes the task and releases the resource. Wait for a primitive
task or use of some resource by another agent until the task finishes or
the agent releases the resource. This method may insert a number for
“wait for a tick” for synchronization.

Waiting
Stop until other agents finish tasks that create pre-conditions of the local
task. This method may insert a number for “wait for a tick” for
synchronization.

Replacement

Replace tasks whose post-conditions do not affect tasks in other agents or
whose pre-conditions are not affected by tasks in other agents. This
method may replace the conflicting task with others, but these other tasks
usually have lower utility (or incur extra cost).

Reordering Reorder tasks to avoid negative relationships.

Insertion
Insert tasks whose post-conditions recover the pre-conditions of the task.
This method adds some tasks, so the utility of the resulting plan
decreases.

Commission

Entrust the task to other agents. This form of resolution is preferable
when, for example, a conflict can only be resolved by other agents, or if
another agent can do the task at lower cost. This method can eliminate
some tasks, though some communications, not only for detecting the
sharable tasks of the plans but also for committing them to another agent,
take place.

Table 1. Examples of methods of resolution.

3.3 Conflict detection and resolution
A number of resolution methods, shown in Table 1, are applied to resolve conflicts. Thus,
the agents involved must negotiate which agent (or all agents involved) should commit to
modifying their plans and then decide what methods should be applied. These resolution

Effective	Planning	for	Conflicting	Situations	for	Ubiquitous	Sensor	Network	Environments 97

We focus on applications where the same or similar plans are frequently reproduced.
Examples of target applications are planning for the intelligent behaviours in sensor-
network and ubiquitous-computing systems with many devices, such as sensors, effectors
and robots (Figure 1), where agents reside in these devices to control them (Takada et al.,
2003). Examples of application scenarios are described in (Kurihara et al., 2005). In this sort
of application, e.g., robots moving in a room and assisting in people's daily activities, certain
actions are repeated. We assume that other plans that are already scheduled or being
executed are not modified (at least, the plans that have already been approved should be
preferred) in the current implementation. Often this restricts the quality of the resulting
plan. Our aim, however, is to select the most appropriate SL plan in a timely manner. If all
of the plans generated at the SL appear to have high-discount conflicts, the agent can
backtrack and select another plan at the SL or at a higher level; the agent still creates an
abstract plan, which is simpler than creating a useless primitive plan, so we believe that the
cost is not so high.

3.2 Conflict detection at screening level
The agent detects possible conflicts, according to resource and task information at the SL, by
identifying the possibility of whether multiple plans will use the same resources, such as
locations (e.g., squares in Figure 1). An example is illustrated in Figure 3, for which the SL is
level 2 in Figure 1; a square at this SL (specified by a pair of lower-case letters) corresponds
to 4x4 squares in the primitive model (A square in the primitive level is specified by a pair of
positive integers.). In Figure 3, the agent can suggest that task tl = move(cd

→ dd) in the new
plan may conflict with task t'n = move(cd

→ bd) in the SL-valid plan, where move(cd

→ dd)
is the SL plan expressing the agent's movement from somewhere in area (c, d) to area (d, d).
This conflict can be expected if some squares in area (c, d) can be simultaneously occupied
by two agents during a certain time interval.

Fig. 3. Example of a detected conflict.

An agent has to take into account time relationships between tasks in the plans. The
duration of each task in the SL-valid plans has already been determined, but not that of the

new plan. Thus, it uses the expected average duration of each SL task. This value is initially
given as part of the SL model; for example, move(cd

→ bd) takes four ticks if agents (that is,
robots) can move to the next small square in a tick. The expected duration is then
statistically adjusted according to the generated primitive plans induced from this SL task.
The questions of when and where conflicts likely occur and whether their resolutions are
difficult depend upon the system's environment. Suppose that three agents want to pass
through area (b, d). In the SL model, this area (place is a resource) is expressed as a single
entity, so conflicts can be expected. However, this area has enough room for three agents if
each agent occupies a small square at the primitive level; hence, the conflicts might not
actually occur or might be easily resolved. However, in (c, d) where agents move only left or
right, there is not enough room for three agents. Thus, it seems probable that the agents'
plans will have conflicts there. Of course, this probability is influenced by the temporal
relationships of the agents entering area (c, d). If a conflict is detected, one of the agents
must step out of the other agent's way and wait for it to pass by before resuming its
movement.

Method Description

Synchronizat
ion

 Stop until another agent performing a task that requires a needed
resource finishes the task and releases the resource. Wait for a primitive
task or use of some resource by another agent until the task finishes or
the agent releases the resource. This method may insert a number for
“wait for a tick” for synchronization.

Waiting
Stop until other agents finish tasks that create pre-conditions of the local
task. This method may insert a number for “wait for a tick” for
synchronization.

Replacement

Replace tasks whose post-conditions do not affect tasks in other agents or
whose pre-conditions are not affected by tasks in other agents. This
method may replace the conflicting task with others, but these other tasks
usually have lower utility (or incur extra cost).

Reordering Reorder tasks to avoid negative relationships.

Insertion
Insert tasks whose post-conditions recover the pre-conditions of the task.
This method adds some tasks, so the utility of the resulting plan
decreases.

Commission

Entrust the task to other agents. This form of resolution is preferable
when, for example, a conflict can only be resolved by other agents, or if
another agent can do the task at lower cost. This method can eliminate
some tasks, though some communications, not only for detecting the
sharable tasks of the plans but also for committing them to another agent,
take place.

Table 1. Examples of methods of resolution.

3.3 Conflict detection and resolution
A number of resolution methods, shown in Table 1, are applied to resolve conflicts. Thus,
the agents involved must negotiate which agent (or all agents involved) should commit to
modifying their plans and then decide what methods should be applied. These resolution

Autonomous	Agents98

methods are defined as rules and applied under a certain policy. The resulting plans usually
have extra cost for the resolutions. In this paper, we do not care what kind of policy is used;
our only concern is the cost of resolution and the quality of the resulting plan.

4. Conflict estimation from conflict patterns

4.1 Conflict pattern --- an expression of conflicting situations
A conflict pattern (CP) expresses a conflict between SL plans. First, we focus on an SL task
identified as having a conflict. Let t be an SL task in a new SL plan p, denoted by t

∈ p.
Suppose that SL plans p1, …, pk of other agents are SL-valid. Then CP, denoted here by P(t),
is expressed as

P(t) = (t, (t'1, o1), …, (t'h, oh))

where t’i

∈ pj (1

≤

∃ j

≤ h) and oi is optional data. CP describes the situation where t is
expected to conflict with t'1, …, t'h in SL-valid plans.
The optional data oi can be any information that can be used to distinguish conflicting
situations more accurately. For instance, it may be information about (relative) the time of
execution and agents' names or types that suggest their ability/performance or physical size
(when agents, such as robots and vehicles, have physical bodies). In the example of Figure 3,
CP is expressed as

P1(tl) = (tl, (t'n, (max (s'n – sl, 0), min(el – sl, e'n – sl)))),

where the optional data is the relative time interval during which the expected conflict may
occur. To simplify the expression of this example, we describe the optional data in a more
abstract form. For this purpose, we can use the expressions of time relativity; the duration of
t'n overlaps the anterior half (ah) or posterior half (ph) of the duration of tl. Other cases of
time relativity are expressed as “overlap (ol).” Thus, P1(tl) = (tl, (t'n, r'l)), where r'l = ah, ph or
ol.
The situation in Figure 4 shows that tl may conflict with t'n+1 and t''m-1. The following CP
corresponds to this situation:

P2(tl) = (tl, (t'n+1, r'l), (t''m-1, r''l))

where r'l, r''l = ah, ph or ol.

4.2 Concept of conflict discount
Let U(p) (or U(t)) be the initial utility for a primitive plan p (or a primitive task t). U(p) for a
non-primitive plan (or task) is the range that cumulatively indicates possible lower-
primitive plans/tasks. We introduce the conflict discount for a CP, cd(P). The conflict
discount is conceptually defined as

 cd(P) = U(pp) – U(ppm) + CCR(P) (1)

where pp is the primitive plan of SL plan p before conflict resolution, and ppm is the modified
primitive plan for resolving conflict P. The term CCR indicates the cost of conflict detection
and resolution at the primitive level, which is calculated by combining the costs of
requesting, receiving, and analyzing primitive plans from other agents and applying conflict
resolution rules to modify the new plan. So even if no conflict actually occurs at the
primitive level (U(pp)=U(ppm)), cd(P)

≠ 0. This is because, if a conflict is expected at SL, the
cost of conflict detection will be incurred. Define cd’(P) = U(pp) – U(ppm) as the difference in
utilities. The estimation of cd(P) is described in the next section.
When an agent has a new SL plan p that is expected to have CPs, P1 , …, PN,

cd(p) =

i = 1

N

∑ cd(Pi).

The agent uses the modified utility U(p) – cd(p) instead of U(p). When no conflicts are
predicted, the agent uses U(p) since cd(p) = 0. Our method statistically adjusts the conflict
discounts for frequently appearing CPs. Because we focus on the efficiency of plans, we
assume that U(p) is the estimated execution time of the primitive plan in the example below.

4.3 Estimation of conflict discount
The conflict discount for a CP, cd(P), is iteratively adjusted by the average or update
function as follows when CP is observed s times.

 cds(P) =

di
si = 1

s

∑ (2)

 cds(P) =

λ * cds-1(P) + (1 –

λ) * ds (3)

where 0<

λ < 1 and ds indicates the s-th CCRs plus the s-th observed utility difference
between the original primitive plan and the plan after the resolution of the conflict
corresponding to P. Eq. (3) is more sensitive to environmental changes than Eq. (2). Note
that the conflict of P might not occur at the primitive level after all; if so, ds = 0 + CCRs. For
example, if the partner agent takes route (1) in Figure 3, and this conflict can be resolved by
taking a detour or by using “wait for two ticks” to wait until the partner agent passes by. In
this case, ds =2 + CCRs. However, if the partner agent takes route (2) in Figure 3, no conflict
actually occurs and ds = 0 + CCRs.
To acquire the CCR value for each plan, we assume that agents can monitor their planning
activities by themselves. More precisely, CCR consists of the time for (1) requesting and
receiving primitive plans from other agents that are suggested to have conflicts, (2)
detecting actual conflicts between these plans and the local plan, and (3) modifying the local
plan to resolve these conflicts. Agents keep the times for these activities. The conflict
discount is re-calculated using the value of CCR plus the differential utility for each CP
acquired by each agent from Eq. (2) or (3).

Effective	Planning	for	Conflicting	Situations	for	Ubiquitous	Sensor	Network	Environments 99

methods are defined as rules and applied under a certain policy. The resulting plans usually
have extra cost for the resolutions. In this paper, we do not care what kind of policy is used;
our only concern is the cost of resolution and the quality of the resulting plan.

4. Conflict estimation from conflict patterns

4.1 Conflict pattern --- an expression of conflicting situations
A conflict pattern (CP) expresses a conflict between SL plans. First, we focus on an SL task
identified as having a conflict. Let t be an SL task in a new SL plan p, denoted by t

∈ p.
Suppose that SL plans p1, …, pk of other agents are SL-valid. Then CP, denoted here by P(t),
is expressed as

P(t) = (t, (t'1, o1), …, (t'h, oh))

where t’i

∈ pj (1

≤

∃ j

≤ h) and oi is optional data. CP describes the situation where t is
expected to conflict with t'1, …, t'h in SL-valid plans.
The optional data oi can be any information that can be used to distinguish conflicting
situations more accurately. For instance, it may be information about (relative) the time of
execution and agents' names or types that suggest their ability/performance or physical size
(when agents, such as robots and vehicles, have physical bodies). In the example of Figure 3,
CP is expressed as

P1(tl) = (tl, (t'n, (max (s'n – sl, 0), min(el – sl, e'n – sl)))),

where the optional data is the relative time interval during which the expected conflict may
occur. To simplify the expression of this example, we describe the optional data in a more
abstract form. For this purpose, we can use the expressions of time relativity; the duration of
t'n overlaps the anterior half (ah) or posterior half (ph) of the duration of tl. Other cases of
time relativity are expressed as “overlap (ol).” Thus, P1(tl) = (tl, (t'n, r'l)), where r'l = ah, ph or
ol.
The situation in Figure 4 shows that tl may conflict with t'n+1 and t''m-1. The following CP
corresponds to this situation:

P2(tl) = (tl, (t'n+1, r'l), (t''m-1, r''l))

where r'l, r''l = ah, ph or ol.

4.2 Concept of conflict discount
Let U(p) (or U(t)) be the initial utility for a primitive plan p (or a primitive task t). U(p) for a
non-primitive plan (or task) is the range that cumulatively indicates possible lower-
primitive plans/tasks. We introduce the conflict discount for a CP, cd(P). The conflict
discount is conceptually defined as

 cd(P) = U(pp) – U(ppm) + CCR(P) (1)

where pp is the primitive plan of SL plan p before conflict resolution, and ppm is the modified
primitive plan for resolving conflict P. The term CCR indicates the cost of conflict detection
and resolution at the primitive level, which is calculated by combining the costs of
requesting, receiving, and analyzing primitive plans from other agents and applying conflict
resolution rules to modify the new plan. So even if no conflict actually occurs at the
primitive level (U(pp)=U(ppm)), cd(P)

≠ 0. This is because, if a conflict is expected at SL, the
cost of conflict detection will be incurred. Define cd’(P) = U(pp) – U(ppm) as the difference in
utilities. The estimation of cd(P) is described in the next section.
When an agent has a new SL plan p that is expected to have CPs, P1 , …, PN,

cd(p) =

i = 1

N

∑ cd(Pi).

The agent uses the modified utility U(p) – cd(p) instead of U(p). When no conflicts are
predicted, the agent uses U(p) since cd(p) = 0. Our method statistically adjusts the conflict
discounts for frequently appearing CPs. Because we focus on the efficiency of plans, we
assume that U(p) is the estimated execution time of the primitive plan in the example below.

4.3 Estimation of conflict discount
The conflict discount for a CP, cd(P), is iteratively adjusted by the average or update
function as follows when CP is observed s times.

 cds(P) =

di
si = 1

s

∑ (2)

 cds(P) =

λ * cds-1(P) + (1 –

λ) * ds (3)

where 0<

λ < 1 and ds indicates the s-th CCRs plus the s-th observed utility difference
between the original primitive plan and the plan after the resolution of the conflict
corresponding to P. Eq. (3) is more sensitive to environmental changes than Eq. (2). Note
that the conflict of P might not occur at the primitive level after all; if so, ds = 0 + CCRs. For
example, if the partner agent takes route (1) in Figure 3, and this conflict can be resolved by
taking a detour or by using “wait for two ticks” to wait until the partner agent passes by. In
this case, ds =2 + CCRs. However, if the partner agent takes route (2) in Figure 3, no conflict
actually occurs and ds = 0 + CCRs.
To acquire the CCR value for each plan, we assume that agents can monitor their planning
activities by themselves. More precisely, CCR consists of the time for (1) requesting and
receiving primitive plans from other agents that are suggested to have conflicts, (2)
detecting actual conflicts between these plans and the local plan, and (3) modifying the local
plan to resolve these conflicts. Agents keep the times for these activities. The conflict
discount is re-calculated using the value of CCR plus the differential utility for each CP
acquired by each agent from Eq. (2) or (3).

Autonomous	Agents100

Fig. 4. Example of conflicts between plans.

The calculation of cd(p) of SL plan p, like the conflict resolution process, is an iteration of the
procedures for (1) searching for, from the first task, the task t that has a conflict pattern P
with other plans, and (2) predicting the conflict discount cd(P). In procedure (2), the
additional cost of avoiding conflicts is predicted, and thus the start times of subsequent
tasks may be delayed for this amount of time. Since a number of conflicts may appear and
disappear in the remaining part of the plan because of this delay, the agent detects the next
conflicting task by using the adjusted duration.

4.4 Sub-conflict patterns
It is probable that many CPs will be created, and storing many CPs in the casebase would
require a large amount of memory. This also incurs a large search cost, which degrades
scalability. It also lowers the performance of conflict estimations of the CPs. Here, we can try
to reduce the memory taken up by the CPs.
Suppose that P1 and P2 are CPs:

P1 = (t, (t1, r1), …, (tn, rn))
P2 = (t', (t'1, r'1), …, (t'm, r'm))

If t = t' and {(t1, r1), …, (tn, rn)}

⊂ {(t'1, r'1), …, (t'm, r'm)}, then P1 is the sub-conflict pattern
(sub-CP) of P2, denoted by P1

⊂ P2. Now, we assume that cd(P1)

≤ cd(P2) if P1

⊂ P2. This is
a natural assumption because P1 is resolved if the conflict with P2 is resolved.
To save memory, the agent only stores CPs whose conflict discount values are near the
turning point of the decision. For example, if cd(P2) is sufficiently small, the cd value for P1
(

⊆P2) will not necessarily be stored, so its cd estimation can be eliminated. Similarly, if
cd(P1) is large, which means that the agent will give up the current SL plan, the cd value for
P2 (

⊇P1) does not have to be stored.

5. Experiments

5.1 Conflict discount estimation
We experimentally investigated how cd' (instead of cd) changes depending on the ways that
agents interfere in a simulated laboratory room (Figure 1). Agent A randomly selects a

starting point in region R1 and a goal in region R2 and then tries to generate a new plan for
this movement. Another agent, B, already has an approved plan whose start and goal are
also randomly selected in R1 and R2. In this setting, these agents do not cause any conflict
when they may take different routes, such as to the north or south of the meeting table.
However, they are likely to have conflicts when they both have to pass through area (c, d)
because chairs and computer tables slightly narrow the route through it. Hence, we focused
on the cases in which a conflict would be expected there at the SL and iterated the
experiment until A's task move(cd

→ dd) conflicted with B's task, which were both expressed
as move(cd

→ dd) (same direction) at the SL. Note that the duration of A's SL plan was an
estimated value that may differ from the actual duration of execution. This estimated
duration was not used in the experiments in (Sugawara et al., 2005); thus, some of the
experimental values shown below are slightly different from the ones reported in that paper.
The SL plan was expanded into a primitive plan, and we investigated the conflict discount
after conflict resolution. Because B requests A's primitive plan, extra costs may be incurred
even if no conflicts end up occurring. Therefore, in the following experiments, the number
of plans of other agents that were predicted to have conflicts with the new plan was used as
the approximate value of CCR (hence, a constant for each P) of Eq. (1), because it is
proportional to the number of these plans. This assumption means that it takes a tick to
request and receive a primitive plan from another agent, check for conflicts between the
received and local plans, and resolve these conflicts. We iterated this experiment a few
hundred times to calculate cd’.
The task move(cd

→ dd) usually takes four to six ticks in this environment. Note that we
assumed the SL-task move(X,Y) during interval [s, e] occupies resource X during s to e and
resource Y at e and that the primitive-level task move(x, y) during [s, s+1] (a primitive task
takes 1 tick) occupies x and y during s to s+1. If the agent finds a possible conflict within the
first two ticks, the relative time relationship is denoted by ah; Additionally note that if it
finds such a possibility within the last two ticks, the relative time relationship is denoted by
ph. Otherwise, the relative time relationship is denoted by ol. Hence, we estimated the
values of cd’ for the following conflict patterns:

P3 = (move(cd

→ dd), ((move(cd

→ dd), r))),

where r is ah, ph or ol, meaning that these two agents move in the same direction.

Fig. 5. Estimated cd’ and average values.

Effective	Planning	for	Conflicting	Situations	for	Ubiquitous	Sensor	Network	Environments 101

Fig. 4. Example of conflicts between plans.

The calculation of cd(p) of SL plan p, like the conflict resolution process, is an iteration of the
procedures for (1) searching for, from the first task, the task t that has a conflict pattern P
with other plans, and (2) predicting the conflict discount cd(P). In procedure (2), the
additional cost of avoiding conflicts is predicted, and thus the start times of subsequent
tasks may be delayed for this amount of time. Since a number of conflicts may appear and
disappear in the remaining part of the plan because of this delay, the agent detects the next
conflicting task by using the adjusted duration.

4.4 Sub-conflict patterns
It is probable that many CPs will be created, and storing many CPs in the casebase would
require a large amount of memory. This also incurs a large search cost, which degrades
scalability. It also lowers the performance of conflict estimations of the CPs. Here, we can try
to reduce the memory taken up by the CPs.
Suppose that P1 and P2 are CPs:

P1 = (t, (t1, r1), …, (tn, rn))
P2 = (t', (t'1, r'1), …, (t'm, r'm))

If t = t' and {(t1, r1), …, (tn, rn)}

⊂ {(t'1, r'1), …, (t'm, r'm)}, then P1 is the sub-conflict pattern
(sub-CP) of P2, denoted by P1

⊂ P2. Now, we assume that cd(P1)

≤ cd(P2) if P1

⊂ P2. This is
a natural assumption because P1 is resolved if the conflict with P2 is resolved.
To save memory, the agent only stores CPs whose conflict discount values are near the
turning point of the decision. For example, if cd(P2) is sufficiently small, the cd value for P1
(

⊆P2) will not necessarily be stored, so its cd estimation can be eliminated. Similarly, if
cd(P1) is large, which means that the agent will give up the current SL plan, the cd value for
P2 (

⊇P1) does not have to be stored.

5. Experiments

5.1 Conflict discount estimation
We experimentally investigated how cd' (instead of cd) changes depending on the ways that
agents interfere in a simulated laboratory room (Figure 1). Agent A randomly selects a

starting point in region R1 and a goal in region R2 and then tries to generate a new plan for
this movement. Another agent, B, already has an approved plan whose start and goal are
also randomly selected in R1 and R2. In this setting, these agents do not cause any conflict
when they may take different routes, such as to the north or south of the meeting table.
However, they are likely to have conflicts when they both have to pass through area (c, d)
because chairs and computer tables slightly narrow the route through it. Hence, we focused
on the cases in which a conflict would be expected there at the SL and iterated the
experiment until A's task move(cd

→ dd) conflicted with B's task, which were both expressed
as move(cd

→ dd) (same direction) at the SL. Note that the duration of A's SL plan was an
estimated value that may differ from the actual duration of execution. This estimated
duration was not used in the experiments in (Sugawara et al., 2005); thus, some of the
experimental values shown below are slightly different from the ones reported in that paper.
The SL plan was expanded into a primitive plan, and we investigated the conflict discount
after conflict resolution. Because B requests A's primitive plan, extra costs may be incurred
even if no conflicts end up occurring. Therefore, in the following experiments, the number
of plans of other agents that were predicted to have conflicts with the new plan was used as
the approximate value of CCR (hence, a constant for each P) of Eq. (1), because it is
proportional to the number of these plans. This assumption means that it takes a tick to
request and receive a primitive plan from another agent, check for conflicts between the
received and local plans, and resolve these conflicts. We iterated this experiment a few
hundred times to calculate cd’.
The task move(cd

→ dd) usually takes four to six ticks in this environment. Note that we
assumed the SL-task move(X,Y) during interval [s, e] occupies resource X during s to e and
resource Y at e and that the primitive-level task move(x, y) during [s, s+1] (a primitive task
takes 1 tick) occupies x and y during s to s+1. If the agent finds a possible conflict within the
first two ticks, the relative time relationship is denoted by ah; Additionally note that if it
finds such a possibility within the last two ticks, the relative time relationship is denoted by
ph. Otherwise, the relative time relationship is denoted by ol. Hence, we estimated the
values of cd’ for the following conflict patterns:

P3 = (move(cd

→ dd), ((move(cd

→ dd), r))),

where r is ah, ph or ol, meaning that these two agents move in the same direction.

Fig. 5. Estimated cd’ and average values.

Autonomous	Agents102

Tables 1 and 2 show the average values from ten experiments based on ten different random
seeds, and the graphs in Figure 5 are from one of these experiments.
Graphs (a) in Figure 5 show the estimated values of cd’m (

λ = 0.98, 1

≤ m

≤ 500) derived
from Eqs. (2) and (3) when r = ol. In these cases, cd’(P3) = 0.71 (so cd(P3) = cd'(P3)+ CCR(P3)
= 1.71), which is reasonably small. This is because the two-square-wide path is wide enough
for two agents to pass through the area, but agent A sometimes has to take a detour to avoid
conflicts. Other cases, such as moving in the opposite direction, are shown in (Sugawara et
al., 2005).
However, the cd’ values largely differ when two agents, B and C, which have approved
plans (i.e., plans that do not conflict with each other), move in the same direction move(cd

→
dd) and agent A begins to create a plan to move in the opposite direction though the same
area. The conflict pattern of this situation is expressed as

P4 = (move(cd

→bd)), ((move(cd

→dd)), ol), (move(cd

→dd)), ol))).

The estimated cd’(P4) = 5.12 (cd(P4) = 7.12) is quite different from the previous cases, as
shown by graphs (b) in Figure 5. Because B and C move almost simultaneously without
conflicts, they usually occupy the narrow route in area (c, d) together. Thus, agent A always
has to move aside, wait for several ticks until B and C pass, and then move back to the
original route. If the agent's new plan is predicted to have this conflict pattern at the SL, it
can select, after learning, another route, such as one taking it north of the meeting table or
another taking it south of the sofa in Figure 1, provided the route is shorter than the one in
the original plan plus 7.12.
Table 2 shows the estimated cd’ values in time-relativity cases other than P4. For example, if
one of the relative time relationships in P4 is ah (This CP is denoted by P'4), the estimated
cd’(P'4) = 1.80. This is small because if B and C move a slight distance away from each other,
A can weave its way around them. In the case of ph-ph, A's planned task move(cd

→ bd) may
conflict in the latter half of its execution, so the agents will usually not meet in the narrow
area (A moves right to left). However, because of uncertainty, they infrequently meet at
different times in the narrow area. Table 2 suggests that the values of cd’ depend on the
resource structure of the routes, especially area (c, d) in Figure 1.

 ol-ol (P4) ph-ph ah-ah ah-ol (P'4) ah-ph ph-ol

Value of cd' 5.12 3.67 3.30 1.80 0.75 1.87
Table 2. Experimentally estimated conflict discount cd’.

Suppose that in another situation the agent finds a CP, P5 such that P4

⊂ P5. This CP may
appear when conflict among more than four agents at (c, d) is expected. In this case, cd’(P5)
must be larger than 5.12. If this value is larger than the predefined threshold, the agent can
calculate that cd(P5)

≥ 7.12 (or cd(P5)

≥ 8.12 if this conflict occurs among more than four
agents), suggesting that it should try to find another route or shift (delay) its start time to
avoid this conflict, even if it has no data about P5. Conversely, cd’(P'4) = 1.80 can induce
cd’(P3)

≤ 1.80. If this value is small enough, the agent does not need to calculate cd(P3).
Table 2 also indicates that cd’(P3)

≤ 0.70 if r = ah or ph in P3.

5.2 Cost (length) of generated plans
We investigated how efficient plans are generated with lower cost after a conflict pattern is
found. In our planning strategy, agent A tries to select or generate another SL plan that is
expected to have no conflict with other plans and whose estimated utility (in our case, the
length of the plan) is less than the estimated utility of the original SL plan plus cd (if the CP
is P4, then cd(P4) is 7.12). The cost of selecting or generating another SL-plan is relatively
low because we can set the upper limit of plan length. If A can find the new SL plan, it is
selected and further refined. If A cannot find one, the original plan is selected (so conflict
detection and resolution may be required). In the conventional planning strategy, the first
SL plan to be generated would always be refined even if some conflicts were expected. (Of
course, there might be no conflicts after all).
We examined, in our simulated room, the improvement of our planning strategy that
resulted from using the estimated conflict discount value in Table 2. The results of this
experiment (Table 3) show that our planning strategy provides an improvement of 2.65 ticks
on average when a conflicting situation corresponding P4 is detected. In other cases, our
planning method can generate efficient plans except when the conflict time relativity is ph-ol.
This improvement is not very large. However, the ability to provide some information for
deciding whether the agent should continue to refine the current plan even if the conflict
resolution process will very likely be invoked or try to find another plan that does not have
conflict with other agents is significant in applications like ours. In the ph-ol case, cd’ is low
so A cannot find any other better route.

 CPs Conventional strategy Our planning strategy Improvement
P4 (ol-ol) 33.34 30.69 2.65 %
ah-ah 32.39 30.44 1.95 %
ph-ph 30.93 29.40 1.53 %
ph-ol 23.80 23.80 0 %

Table 3. Cost (length) of resulting primitive plans. Columns 1 and 2 respectively show the
average cost of primitive plans derived from the original SL plans and that of primitive
plans derived under our planning strategy. In both cases, the cost of conflict detection and
resolution is included.

The improvement shown in Table 3 seems fairly small, but our simulated laboratory room is
based on an actual room; we believe that our method would be more significant in other
situations/environments. For example, (1) if more robots were to move right to left in the
narrow area in Figure 3, (2) if the chair there were a bench (a longer chair), or (3) if there
were a shorter detour, the improvement would be larger, thus the resulting plans would be
of relatively higher quality than the ones obtained by a conventional planning strategy. We
finally note that, although the start and goal positions were selected randomly in our
experiments, agents (including persons) in actual applications usually have fixed start and
goal points. Therefore, we believe that the improvements derived from the experimental
results would appear more when this is actually applied to this kind of systems.

Effective	Planning	for	Conflicting	Situations	for	Ubiquitous	Sensor	Network	Environments 103

Tables 1 and 2 show the average values from ten experiments based on ten different random
seeds, and the graphs in Figure 5 are from one of these experiments.
Graphs (a) in Figure 5 show the estimated values of cd’m (

λ = 0.98, 1

≤ m

≤ 500) derived
from Eqs. (2) and (3) when r = ol. In these cases, cd’(P3) = 0.71 (so cd(P3) = cd'(P3)+ CCR(P3)
= 1.71), which is reasonably small. This is because the two-square-wide path is wide enough
for two agents to pass through the area, but agent A sometimes has to take a detour to avoid
conflicts. Other cases, such as moving in the opposite direction, are shown in (Sugawara et
al., 2005).
However, the cd’ values largely differ when two agents, B and C, which have approved
plans (i.e., plans that do not conflict with each other), move in the same direction move(cd

→
dd) and agent A begins to create a plan to move in the opposite direction though the same
area. The conflict pattern of this situation is expressed as

P4 = (move(cd

→bd)), ((move(cd

→dd)), ol), (move(cd

→dd)), ol))).

The estimated cd’(P4) = 5.12 (cd(P4) = 7.12) is quite different from the previous cases, as
shown by graphs (b) in Figure 5. Because B and C move almost simultaneously without
conflicts, they usually occupy the narrow route in area (c, d) together. Thus, agent A always
has to move aside, wait for several ticks until B and C pass, and then move back to the
original route. If the agent's new plan is predicted to have this conflict pattern at the SL, it
can select, after learning, another route, such as one taking it north of the meeting table or
another taking it south of the sofa in Figure 1, provided the route is shorter than the one in
the original plan plus 7.12.
Table 2 shows the estimated cd’ values in time-relativity cases other than P4. For example, if
one of the relative time relationships in P4 is ah (This CP is denoted by P'4), the estimated
cd’(P'4) = 1.80. This is small because if B and C move a slight distance away from each other,
A can weave its way around them. In the case of ph-ph, A's planned task move(cd

→ bd) may
conflict in the latter half of its execution, so the agents will usually not meet in the narrow
area (A moves right to left). However, because of uncertainty, they infrequently meet at
different times in the narrow area. Table 2 suggests that the values of cd’ depend on the
resource structure of the routes, especially area (c, d) in Figure 1.

 ol-ol (P4) ph-ph ah-ah ah-ol (P'4) ah-ph ph-ol

Value of cd' 5.12 3.67 3.30 1.80 0.75 1.87
Table 2. Experimentally estimated conflict discount cd’.

Suppose that in another situation the agent finds a CP, P5 such that P4

⊂ P5. This CP may
appear when conflict among more than four agents at (c, d) is expected. In this case, cd’(P5)
must be larger than 5.12. If this value is larger than the predefined threshold, the agent can
calculate that cd(P5)

≥ 7.12 (or cd(P5)

≥ 8.12 if this conflict occurs among more than four
agents), suggesting that it should try to find another route or shift (delay) its start time to
avoid this conflict, even if it has no data about P5. Conversely, cd’(P'4) = 1.80 can induce
cd’(P3)

≤ 1.80. If this value is small enough, the agent does not need to calculate cd(P3).
Table 2 also indicates that cd’(P3)

≤ 0.70 if r = ah or ph in P3.

5.2 Cost (length) of generated plans
We investigated how efficient plans are generated with lower cost after a conflict pattern is
found. In our planning strategy, agent A tries to select or generate another SL plan that is
expected to have no conflict with other plans and whose estimated utility (in our case, the
length of the plan) is less than the estimated utility of the original SL plan plus cd (if the CP
is P4, then cd(P4) is 7.12). The cost of selecting or generating another SL-plan is relatively
low because we can set the upper limit of plan length. If A can find the new SL plan, it is
selected and further refined. If A cannot find one, the original plan is selected (so conflict
detection and resolution may be required). In the conventional planning strategy, the first
SL plan to be generated would always be refined even if some conflicts were expected. (Of
course, there might be no conflicts after all).
We examined, in our simulated room, the improvement of our planning strategy that
resulted from using the estimated conflict discount value in Table 2. The results of this
experiment (Table 3) show that our planning strategy provides an improvement of 2.65 ticks
on average when a conflicting situation corresponding P4 is detected. In other cases, our
planning method can generate efficient plans except when the conflict time relativity is ph-ol.
This improvement is not very large. However, the ability to provide some information for
deciding whether the agent should continue to refine the current plan even if the conflict
resolution process will very likely be invoked or try to find another plan that does not have
conflict with other agents is significant in applications like ours. In the ph-ol case, cd’ is low
so A cannot find any other better route.

 CPs Conventional strategy Our planning strategy Improvement
P4 (ol-ol) 33.34 30.69 2.65 %
ah-ah 32.39 30.44 1.95 %
ph-ph 30.93 29.40 1.53 %
ph-ol 23.80 23.80 0 %

Table 3. Cost (length) of resulting primitive plans. Columns 1 and 2 respectively show the
average cost of primitive plans derived from the original SL plans and that of primitive
plans derived under our planning strategy. In both cases, the cost of conflict detection and
resolution is included.

The improvement shown in Table 3 seems fairly small, but our simulated laboratory room is
based on an actual room; we believe that our method would be more significant in other
situations/environments. For example, (1) if more robots were to move right to left in the
narrow area in Figure 3, (2) if the chair there were a bench (a longer chair), or (3) if there
were a shorter detour, the improvement would be larger, thus the resulting plans would be
of relatively higher quality than the ones obtained by a conventional planning strategy. We
finally note that, although the start and goal positions were selected randomly in our
experiments, agents (including persons) in actual applications usually have fixed start and
goal points. Therefore, we believe that the improvements derived from the experimental
results would appear more when this is actually applied to this kind of systems.

Autonomous	Agents104

6. Discussion and related work

There have been a number of studies on efficient planning in the MAS context. For example,
GPGP (Decker & Lesser, 1992) is a general framework for generating effective plans using
task and resource relationships among agents. Our method can be used in this framework to
identify which abstract plan (task) should be refined first so that the map of the task
relationships related to the plan can be created.
Hierarchical planning and coordination issues for improving MAS planning have also been
discussed. For example, Ref. (Clement et al., 2001) proposed choosing the most appropriate
abstract task/plan on the basis of summary information derived from the primitive tasks
and plans in a bottom-up fashion. This method can avoid hopeless planning if some
resources are recognized to be insufficient at an abstract level. It also introduced fewest-
threats-first (FTF) heuristics to choose a lower (deeper) plan. Our approach focuses on the
cases where conflicts can be accurately identified at only deeper levels, because the tasks,
resources, and their environment in an abstract model are described in an abstract way.
Furthermore, a plan with fewer conflicts does not always lead to a better plan; it is possible
that only one conflict fails to be resolved but that conflict is nonetheless a critical one. The
idea behind our research is that, although conflicts may be invisible at abstract levels
(including the SL), there is a tendency that conflicts often occur depending on the
environmental factors related to the availability and use of resources, such as the location of
agents, the kind of resources, and type of agents, as well as on the kind of task. Hence, we
aim at expressing and distinguishing these situations by using CPs in order to enable agents
to statistically learn the difficulty of conflict resolution and the quality of a resulting plan.
A number of issues related to MAS planning have been investigated in case-based reasoning
(CBR) or its related domains. For example, (Giampapa & Sycara, 2001) proposed a
conversational case-based reasoner, called NaCoDAE, which is a type of agent in their MAS
applications and helps users decide a course of action by engaging them in a dialogue in
which they must describe the problem or situation of assigning missions to platoons. Plan
reuse for the same/similar situations in a MAS context has also been proposed for MAS
coordination (Sugawara, 1995) and collaboration (Plaza, 2005). A remarkable work similar to
our approach is (Macedo & Cardoso, 2004), where a case is used to expand an abstract plan
to a less abstract one in HTN, although we focus on avoiding conflicts and/or selecting
costless conflicts. In this sense, our motivation is more similar to that in (Aha et al., 2005)
which applied CBR to a real-time strategy game.
Our work is also related to hierarchical reinforcement learning, such as (Dietterich, 1998;
Kaelbling, 1993; Sutton et al., 1998), because an abstract task is considered to be a subroutine
or a subfunction to be learned. For example, in the MAXQ approach (Dietterich, 1998), a task
is divided into subroutines that are individually learned by RL methods. Our approach is to
select an appropriate subroutine for each situation. In MAXQ, the conflict discount is
assumed to have been learned at lower levels. However, in a multi-agent setting, it is
naturally difficult to define the task hierarchy for all agents simultaneously.
One clear limitation of our method is that the reliability of cd values heavily depends on the
accuracy of the SL conflict detection and time-estimation processes. Thus, it is very
important to select the appropriate SL and carefully describe the SL model. For example, if
level 1 in Figure 1 is the SL, our method does not work well since that level is too abstract.
As mentioned above, another issue is that the use of optional data in CPs is important for
distinguishing one situation from another. To distinguish situations, our method needs the

location of task execution (which may determine available resources), type of agent (which
may determine required resources), and (relative) time information. Additionally, if many
CPs are expected in a plan, conflict detection at the SL may be ambiguous regarding the
scheduled time and resources of the SL tasks, which would affect the quality and cost of the
plans. Finally, our method will have to be extended before it can deal with situations where
multiple plans are created simultaneously; this extension is important for effective planning,
and it will be addressed in a future work.

7. Conclusion

This chapter proposed a method to predict, at an abstract level called the screening level, the
cost of possible conflict resolution, and the quality of the resulting plan, to generate better
primitive (concrete) plans. In our framework, an agent called the manager agent maintains
the plans that are scheduled or being executed at the screening level and predicts possible
conflicts between these plans and the newly proposed plan. Then, if necessary, a detailed
analysis of primitive plans is performed by individual agents. We conducted experiments to
reveal the estimated additional cost (estimated cd and cd’ values) of the plans after conflict
resolution and the efficiency of plans derived from our method. Our method enables agents
to decide whether the current plan should be refined or another plan should be created at an
earlier stage, that is, before an agent creates its primitive plan; this decision makes agents'
planning efficient.
Acknowledgement: This research was supported by SCOPE program of the Ministry of
Internal Affairs and Communications, Japan, under contract 071607001.

8. References

Aha, D. W.; Molineaux, M. & Ponsen, M. (2005). Learning to win: Case-based plan selection
in a real-time strategy game, Proc. of the Sixth International Conference on Case-Based
Reasoning (ICCBR 2005), LNAI 3620, pp. 5 – 20.

Clement, B. J.; Barrett, A. C.; Rabideau, G. R. & Durfee. E. H. (2001). Using abstraction in
planning and scheduling, Proc. of 6th European Conference on Planning.

Decker, K. & Lesser, V. (1992). Generalizing the Partial Global Planning Algorithm,
International Journal on Intelligent Cooperative Information Systems, Vol. 1, No. 2, pp.
319 – 346.

Dietterich, T. G. (1998). The MAXQ Method for Hierarchical Reinforcement Learning,
Proceedings of the International Conference on Machine Learning (ICML 98), pp. 118 – 126.

Giampapa, J. A. & Sycara, K. (2001). Conversational case-based planning for agent team
coordination, Proc. of the Fourth International Conference on Case-Based Reasoning
(ICCBR 2001), LNAI 2080, pp. 189 – 203.

Goldwin, R. & Simmons, R. (1998). Search Control of Plan Generation in Decision-Theoretic
Planners, Proc. of AIPS 1998, pp. 94 – 101.

Erol, J. H. K. & Nau, D. S. (1994). HTN planning: Complexity and expressivity, Proc. of the
National Conference on Artificial Intelligence (AAAI 94), pp. 1123 – 1128.

Kaelbling, L. P. (1993). Hierarchical Learning in Stochastic Domains: Preliminary Results,
Proceedings of the International Conference on Machine Learning (ICML-93), pp. 167 –
173.

Effective	Planning	for	Conflicting	Situations	for	Ubiquitous	Sensor	Network	Environments 105

6. Discussion and related work

There have been a number of studies on efficient planning in the MAS context. For example,
GPGP (Decker & Lesser, 1992) is a general framework for generating effective plans using
task and resource relationships among agents. Our method can be used in this framework to
identify which abstract plan (task) should be refined first so that the map of the task
relationships related to the plan can be created.
Hierarchical planning and coordination issues for improving MAS planning have also been
discussed. For example, Ref. (Clement et al., 2001) proposed choosing the most appropriate
abstract task/plan on the basis of summary information derived from the primitive tasks
and plans in a bottom-up fashion. This method can avoid hopeless planning if some
resources are recognized to be insufficient at an abstract level. It also introduced fewest-
threats-first (FTF) heuristics to choose a lower (deeper) plan. Our approach focuses on the
cases where conflicts can be accurately identified at only deeper levels, because the tasks,
resources, and their environment in an abstract model are described in an abstract way.
Furthermore, a plan with fewer conflicts does not always lead to a better plan; it is possible
that only one conflict fails to be resolved but that conflict is nonetheless a critical one. The
idea behind our research is that, although conflicts may be invisible at abstract levels
(including the SL), there is a tendency that conflicts often occur depending on the
environmental factors related to the availability and use of resources, such as the location of
agents, the kind of resources, and type of agents, as well as on the kind of task. Hence, we
aim at expressing and distinguishing these situations by using CPs in order to enable agents
to statistically learn the difficulty of conflict resolution and the quality of a resulting plan.
A number of issues related to MAS planning have been investigated in case-based reasoning
(CBR) or its related domains. For example, (Giampapa & Sycara, 2001) proposed a
conversational case-based reasoner, called NaCoDAE, which is a type of agent in their MAS
applications and helps users decide a course of action by engaging them in a dialogue in
which they must describe the problem or situation of assigning missions to platoons. Plan
reuse for the same/similar situations in a MAS context has also been proposed for MAS
coordination (Sugawara, 1995) and collaboration (Plaza, 2005). A remarkable work similar to
our approach is (Macedo & Cardoso, 2004), where a case is used to expand an abstract plan
to a less abstract one in HTN, although we focus on avoiding conflicts and/or selecting
costless conflicts. In this sense, our motivation is more similar to that in (Aha et al., 2005)
which applied CBR to a real-time strategy game.
Our work is also related to hierarchical reinforcement learning, such as (Dietterich, 1998;
Kaelbling, 1993; Sutton et al., 1998), because an abstract task is considered to be a subroutine
or a subfunction to be learned. For example, in the MAXQ approach (Dietterich, 1998), a task
is divided into subroutines that are individually learned by RL methods. Our approach is to
select an appropriate subroutine for each situation. In MAXQ, the conflict discount is
assumed to have been learned at lower levels. However, in a multi-agent setting, it is
naturally difficult to define the task hierarchy for all agents simultaneously.
One clear limitation of our method is that the reliability of cd values heavily depends on the
accuracy of the SL conflict detection and time-estimation processes. Thus, it is very
important to select the appropriate SL and carefully describe the SL model. For example, if
level 1 in Figure 1 is the SL, our method does not work well since that level is too abstract.
As mentioned above, another issue is that the use of optional data in CPs is important for
distinguishing one situation from another. To distinguish situations, our method needs the

location of task execution (which may determine available resources), type of agent (which
may determine required resources), and (relative) time information. Additionally, if many
CPs are expected in a plan, conflict detection at the SL may be ambiguous regarding the
scheduled time and resources of the SL tasks, which would affect the quality and cost of the
plans. Finally, our method will have to be extended before it can deal with situations where
multiple plans are created simultaneously; this extension is important for effective planning,
and it will be addressed in a future work.

7. Conclusion

This chapter proposed a method to predict, at an abstract level called the screening level, the
cost of possible conflict resolution, and the quality of the resulting plan, to generate better
primitive (concrete) plans. In our framework, an agent called the manager agent maintains
the plans that are scheduled or being executed at the screening level and predicts possible
conflicts between these plans and the newly proposed plan. Then, if necessary, a detailed
analysis of primitive plans is performed by individual agents. We conducted experiments to
reveal the estimated additional cost (estimated cd and cd’ values) of the plans after conflict
resolution and the efficiency of plans derived from our method. Our method enables agents
to decide whether the current plan should be refined or another plan should be created at an
earlier stage, that is, before an agent creates its primitive plan; this decision makes agents'
planning efficient.
Acknowledgement: This research was supported by SCOPE program of the Ministry of
Internal Affairs and Communications, Japan, under contract 071607001.

8. References

Aha, D. W.; Molineaux, M. & Ponsen, M. (2005). Learning to win: Case-based plan selection
in a real-time strategy game, Proc. of the Sixth International Conference on Case-Based
Reasoning (ICCBR 2005), LNAI 3620, pp. 5 – 20.

Clement, B. J.; Barrett, A. C.; Rabideau, G. R. & Durfee. E. H. (2001). Using abstraction in
planning and scheduling, Proc. of 6th European Conference on Planning.

Decker, K. & Lesser, V. (1992). Generalizing the Partial Global Planning Algorithm,
International Journal on Intelligent Cooperative Information Systems, Vol. 1, No. 2, pp.
319 – 346.

Dietterich, T. G. (1998). The MAXQ Method for Hierarchical Reinforcement Learning,
Proceedings of the International Conference on Machine Learning (ICML 98), pp. 118 – 126.

Giampapa, J. A. & Sycara, K. (2001). Conversational case-based planning for agent team
coordination, Proc. of the Fourth International Conference on Case-Based Reasoning
(ICCBR 2001), LNAI 2080, pp. 189 – 203.

Goldwin, R. & Simmons, R. (1998). Search Control of Plan Generation in Decision-Theoretic
Planners, Proc. of AIPS 1998, pp. 94 – 101.

Erol, J. H. K. & Nau, D. S. (1994). HTN planning: Complexity and expressivity, Proc. of the
National Conference on Artificial Intelligence (AAAI 94), pp. 1123 – 1128.

Kaelbling, L. P. (1993). Hierarchical Learning in Stochastic Domains: Preliminary Results,
Proceedings of the International Conference on Machine Learning (ICML-93), pp. 167 –
173.

Autonomous	Agents106

Kurihara, S.; Aoyagi, S.; Takada, T.; Hirotsu, T. & Sugawara, T. (2005). Agent-Based Human-
Environment Interaction Framework for Ubiquitous Environment, Proc. of the
International Workshop on Networked Sensing Systems, pp. 103 – 108.

Kurihara, S. (2008). Human Behavior Mining using Sensing Network, Proceedings of the First
International Workshop on Content Creation Activity Support by Networked Sensing
(CCASNS08).

Macedo, L. & Cardoso, A. (2004). Case-Based, Decision-Theoretic, HTN Planning, Proc. of
ECCBR 2004, LNAI 3155, pp. 257 – 271. Springer-Verlag.

Plaza, E. (2005). Cooperative reuse for compositional cases in multi-agent systems, Proc. of
the Sixth International Conference on Case-Based Reasoning (ICCBR 2005), LNAI 3620,
pp. 382 – 396.

Sacerdoti, E. (1974). Planning in a hierarchy of abstraction spaces, Artificial Intelligence, Vol.
5, No. 2, pp.115 – 135.

Sugawara, T. (1995). Reusing Past Plans in Distributed Planning, Proc. of the 1st International
Conference on Multi-Agent Systems (ICMAS95), pp. 360 – 367.

Sugawara, T.; Kurihara, S.; Hirotsu, T.; Fukuda, K. & Takada, T. (2005). Predicting Possible
Conflicts in Hierarchical planning for Multi-Agent Systems, Proc. of 4th International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2005), pp. 813 –
820.

Sutton, R. S.; Precup, D. & Singh. S. (1998). Intra-Option Learning about Temporary Abstract
Actions, Proceedings of the International Conference on Machine Learning (ICML98), pp.
556 – 564.

Takada, T.; Kurihara, S.; Hirotsu, T. & Sugawara, T. (2003). Proximity Mining: Finding
Proximity using Sensor Data History, Proc. of IEEE Workshop on Mobile Computing
Systems and Applications, pp. 129 – 138.

Security	in	Large-Scale	Open	Distributed	Multi-Agent	Systems 107

Security	in	Large-Scale	Open	Distributed	Multi-Agent	Systems

M.A.	Oey,	M.Warnier	and	F.M.T.	Brazier

0

Security in Large-Scale Open
Distributed Multi-Agent Systems

M.A. Oey, M. Warnier and F.M.T. Brazier
Delft University of Technology

The Netherlands

1. Introduction

Designing large-scale distributed multi-agent systems that operate in open environments,
such as the Internet, creates new challenges, especially with respect to security issues. Agents
are autonomous, pro-active, communicative, goal-directed, often capable of learning, and
sometimes mobile (8). Mobile agents traverse the network to access services and resources
they need to achieve the goals they pursue. The potential of mobile agent technology in sec-
tors such as E-Commerce (17; 18), E-Health (29) and E-Governance (10; 52) is well recognized.
In these sectors, security issues such as authentication, authorization, privacy, and copyright
are of utmost importance. Data access control is mandatory: by moving agents to the location
at which data is stored, data access and processing can be done locally and controlled.
Many security requirements need to be addressed for large-scale distributed multi-agent sys-
tems in open environments. The focus of this chapter lies on security requirements specific
for agent systems rather than security requirements for distributed computer systems in gen-
eral. Section 2 identifies the most relevant security requirements for agent systems. This set
of requirements is a minimum that needs to be fulfilled for secure agent systems in open en-
vironments. Sections 3 through 7 discuss the security requirements and possible solutions in
detail. The solutions are illustrated within the context of the AgentScape (20) agent platform.
This platform has been chosen as it has been specially designed to be used in a large-scale,
distributed, open environment. However, similar implementations of these solutions are pos-
sible in other agent platforms.
The chapter closes with an overview of a number of well-known agent platforms, such as
AgentScape (20), Ajanta (23), SeMoA (41), and JADE (5) with its security extensions JADE-
S (34) and S-Agent (16). The discussion focuses on what techniques these agent systems have
used to solve some of the discussed security requirements.

2. Security Issues in Agent Systems

An agent system, a specific type of distributed computer system, needs to address not only
security requirements related to distributed computer systems, but also multi-agent system
specific security requirements. This section identifies a minimum set of security requirements
specific to multi-agent systems that needs to be fulfilled for it to operate securely in an open
environment.

6

Autonomous	Agents108

2.1 Principals in an Agent System
Conceptually, multi-agent systems are distributed, networked, computer systems in which
agent owners run communicating agents that access resources on hosts, each of which runs
an agent platform (i.e., an instance of an agent middleware) that is under the control of a
platform administrator.1 The bold terms are the major principals in a multi-agent system.
Each of these principals faces security threats. A secure agent system must protect these prin-
cipals and their communication with other principals against security threats. For example,
secure communication is needed to protect the communication between two agents, but also
between two platforms and between an agent and a platform or the agent’s owner. In a large-
scale, distributed system, such as the Internet, communication is usually over long distances
and can be intercepted or monitored. In a closed environment, all principals in an agent sys-
tem are known in advance and usually trusted, therefore, security measures are often implicit.
However, in a more open environment, more explicit security measures are needed to guard
against security threats.
Traditionally, security threats are described using the terms confidentiality, integrity, and
availability: the CIA-triad (46). Confidentiality refers to the ability to prevent access by those
that are not authorized. Integrity refers to the ability to prevent any unauthorized modifica-
tion. Availability refers to keeping resources accessible at all times to authorized parties. A
prerequisite for guarding confidentiality, integrity, and availability is identity management (9),
which encompasses naming and authentication. Naming is the ability to identify each in-
dividual principal in an agent system. Authentication is the ability to verify a principal’s
identity. For example, reliable authentication is needed as malicious parties may want to im-
personate certain principals in order to gain access to that principal’s privileges.
The next sections look at security threats in an agent system from the viewpoint of the two
most important stakeholders in an agent system: the agent owner and the agent platform’s
administrator.

2.2 Security Threats for the Agent’s Owner
An agent performs its actions on behalf of its owner, which is usually a legal entity, such as a
human or an organization: the agent owner. The main security concerns for an agent owner
are confidentiality and integrity of his agent, any data it carries, and any communication to
and from the agent. Confidentiality is directly related to guarding the privacy of an agent’s
owner. For example, in an e-health environment, agents acting on behalf of patients carry
privacy-sensitive information that should not be revealed to others.
Agent mobility introduces extra security risks, as agents run on hosts that are out of the con-
trol of the agent’s owner. For example, malicious parties can start agent platforms with the
intent to eavesdrop or manipulate agents that they host. This malicious host problem is hard
to solve, as platforms in general have full control over the agents that run on them. The most
effective solutions involve the use of trusted hardware. Unfortunately, these solutions are usu-
ally also the more costly solutions to implement. Software-only solutions give less protection
but are more practical to implement. The malicious host problem exists foremost in open
environments. It is reasonable to assume that in closed environments all hosts are trusted
to behave well and that adequate authorization mechanisms have been installed to prevent
unauthorized users of the platform to have access to an agent’s private data.

1 The term agent platform or middleware refers to software running on hosts to support agents; agent system
refers to the whole system of agents, agent owners, agent platforms, platform administrators, etc.

Availability of an agent is a requirement for an agent owner that can be implemented by an
agent owner himself, possibly supported by a platform. For example, to make an agent more
fault tolerant, an agent owner can start two (or more) copies of an agent and send them to
different platforms, so that if one agent dies, the other can continue, keeping the agent avail-
able to its owner. Alternatively, an agent owner can trust a platform owner to take adequate
measures to guarantee the availability of an agent platform.

2.3 Security Threats for the Platform’s Administrator
A host’s administrator can run an agent platform (i.e., an instance of the agent middleware)
on his host. An agent platform enables visiting agents to (paid) access to a host’s resources.
The main security concerns for an agent platform’s administrator (who is not necessarily the
same as the host’s administrator) are confidentiality, integrity, and availability of the agent
platform, its resources, and any communication from and to the agent platform.
In open environments, a platform must prepare for deliberate attacks, from outside, as well
as inside. Mobile malicious agents can first migrate to a platform and try to attack a platform
from the inside. Attacks typically include gaining unauthorized access to a host’s resources
or accessing the data of other agents running on that host. To protect against the threat of
malicious agents a resource access control mechanism must be installed that enforces an au-
thorization mechanism that determines who is allowed to access which resource and to what
extent.
A typical resource in an agent system that may be the target of availability threats is the
lookup service. The lookup service is a database that keeps track of the current locations of
all agents in an agent system. An agent system needs this information, for example, to deliver
messages to agents sent from other agents. In an open environment, an attacker could start
an agent platform, join the agent community and subsequently fill the lookup service with
false information about locations of agents. This attack renders the information in a lookup
service useless and consequently paralyzes an agent system as a whole. This specific attack
is a form of a Denial-of-Service attack and illustrates the necessity of a secure lookup ser-
vice which guarantees the correctness of its information. Without it, a platform administrator
cannot guarantee the availability of the agent platform.

2.4 Summary
The next list summarizes the security requirements discussed in this section. Each require-
ment is either a prerequisite for security or is associated with a threat to one of the two main
principals in an agent system: agent owner or platform administrator.

• Prerequisite: Naming and Authentication – the ability to verify the identity of princi-
pals.

• Prerequisite: Communication Security – confidentiality and integrity of data sent be-
tween agents, services, hosts, etc. must be guaranteed.

• Agent owner: Malicious Host protecting an agent’s confidentiality and integrity even if
it runs on a malicious host.

• Platform administrator: Malicious Agent – protecting a host’s confidentiality and in-
tegrity from malicious agents.

• Platform administrator: Secure Lookup Service – guarding the information in the lookup
service.

Security	in	Large-Scale	Open	Distributed	Multi-Agent	Systems 109

2.1 Principals in an Agent System
Conceptually, multi-agent systems are distributed, networked, computer systems in which
agent owners run communicating agents that access resources on hosts, each of which runs
an agent platform (i.e., an instance of an agent middleware) that is under the control of a
platform administrator.1 The bold terms are the major principals in a multi-agent system.
Each of these principals faces security threats. A secure agent system must protect these prin-
cipals and their communication with other principals against security threats. For example,
secure communication is needed to protect the communication between two agents, but also
between two platforms and between an agent and a platform or the agent’s owner. In a large-
scale, distributed system, such as the Internet, communication is usually over long distances
and can be intercepted or monitored. In a closed environment, all principals in an agent sys-
tem are known in advance and usually trusted, therefore, security measures are often implicit.
However, in a more open environment, more explicit security measures are needed to guard
against security threats.
Traditionally, security threats are described using the terms confidentiality, integrity, and
availability: the CIA-triad (46). Confidentiality refers to the ability to prevent access by those
that are not authorized. Integrity refers to the ability to prevent any unauthorized modifica-
tion. Availability refers to keeping resources accessible at all times to authorized parties. A
prerequisite for guarding confidentiality, integrity, and availability is identity management (9),
which encompasses naming and authentication. Naming is the ability to identify each in-
dividual principal in an agent system. Authentication is the ability to verify a principal’s
identity. For example, reliable authentication is needed as malicious parties may want to im-
personate certain principals in order to gain access to that principal’s privileges.
The next sections look at security threats in an agent system from the viewpoint of the two
most important stakeholders in an agent system: the agent owner and the agent platform’s
administrator.

2.2 Security Threats for the Agent’s Owner
An agent performs its actions on behalf of its owner, which is usually a legal entity, such as a
human or an organization: the agent owner. The main security concerns for an agent owner
are confidentiality and integrity of his agent, any data it carries, and any communication to
and from the agent. Confidentiality is directly related to guarding the privacy of an agent’s
owner. For example, in an e-health environment, agents acting on behalf of patients carry
privacy-sensitive information that should not be revealed to others.
Agent mobility introduces extra security risks, as agents run on hosts that are out of the con-
trol of the agent’s owner. For example, malicious parties can start agent platforms with the
intent to eavesdrop or manipulate agents that they host. This malicious host problem is hard
to solve, as platforms in general have full control over the agents that run on them. The most
effective solutions involve the use of trusted hardware. Unfortunately, these solutions are usu-
ally also the more costly solutions to implement. Software-only solutions give less protection
but are more practical to implement. The malicious host problem exists foremost in open
environments. It is reasonable to assume that in closed environments all hosts are trusted
to behave well and that adequate authorization mechanisms have been installed to prevent
unauthorized users of the platform to have access to an agent’s private data.

1 The term agent platform or middleware refers to software running on hosts to support agents; agent system
refers to the whole system of agents, agent owners, agent platforms, platform administrators, etc.

Availability of an agent is a requirement for an agent owner that can be implemented by an
agent owner himself, possibly supported by a platform. For example, to make an agent more
fault tolerant, an agent owner can start two (or more) copies of an agent and send them to
different platforms, so that if one agent dies, the other can continue, keeping the agent avail-
able to its owner. Alternatively, an agent owner can trust a platform owner to take adequate
measures to guarantee the availability of an agent platform.

2.3 Security Threats for the Platform’s Administrator
A host’s administrator can run an agent platform (i.e., an instance of the agent middleware)
on his host. An agent platform enables visiting agents to (paid) access to a host’s resources.
The main security concerns for an agent platform’s administrator (who is not necessarily the
same as the host’s administrator) are confidentiality, integrity, and availability of the agent
platform, its resources, and any communication from and to the agent platform.
In open environments, a platform must prepare for deliberate attacks, from outside, as well
as inside. Mobile malicious agents can first migrate to a platform and try to attack a platform
from the inside. Attacks typically include gaining unauthorized access to a host’s resources
or accessing the data of other agents running on that host. To protect against the threat of
malicious agents a resource access control mechanism must be installed that enforces an au-
thorization mechanism that determines who is allowed to access which resource and to what
extent.
A typical resource in an agent system that may be the target of availability threats is the
lookup service. The lookup service is a database that keeps track of the current locations of
all agents in an agent system. An agent system needs this information, for example, to deliver
messages to agents sent from other agents. In an open environment, an attacker could start
an agent platform, join the agent community and subsequently fill the lookup service with
false information about locations of agents. This attack renders the information in a lookup
service useless and consequently paralyzes an agent system as a whole. This specific attack
is a form of a Denial-of-Service attack and illustrates the necessity of a secure lookup ser-
vice which guarantees the correctness of its information. Without it, a platform administrator
cannot guarantee the availability of the agent platform.

2.4 Summary
The next list summarizes the security requirements discussed in this section. Each require-
ment is either a prerequisite for security or is associated with a threat to one of the two main
principals in an agent system: agent owner or platform administrator.

• Prerequisite: Naming and Authentication – the ability to verify the identity of princi-
pals.

• Prerequisite: Communication Security – confidentiality and integrity of data sent be-
tween agents, services, hosts, etc. must be guaranteed.

• Agent owner: Malicious Host protecting an agent’s confidentiality and integrity even if
it runs on a malicious host.

• Platform administrator: Malicious Agent – protecting a host’s confidentiality and in-
tegrity from malicious agents.

• Platform administrator: Secure Lookup Service – guarding the information in the lookup
service.

Autonomous	Agents110

This set of security requirements forms a bare minimum for agent systems in open environ-
ments. In addition to these security requirements other requirements common to all dis-
tributed computer systems need to be addressed, such as fault tolerance, availability, backups,
traceability, etc. For agent systems in specific domains more stricter security requirements
may apply as well. For example, in privacy sensitive environments anonymity may be an
important requirement.
The remainder of this chapter focuses on the specific security requirements in order. Each
requirement is discussed in more detail and one or more possible solutions are presented.
Sections 3 and 4 discuss the prerequisites naming and authentication, and communication
security. Next, Section 5 focuses on the main security threat to an agent owner: the malicious
host. Finally, Sections 6 and 7 look at threats to a platform administrator and discuss the
malicious agent and a secure lookup service.

3. Naming and Authentication

As mentioned above, identity management is an important security requirement in an open,
distributed agent system. The ability to name principals and authenticate them is an impor-
tant part of identity management.

3.1 Naming
Before authentication can be done, principals in an agent system must first have a (unique)
identifier: a name. This name does not have to be human-readable; it can be a meaning-
less string, as long as it is machine-readable. In principle, names can be static, which means
they do not change over the lifetime of a principal, or dynamic. For humans and organiza-
tions static names are a more logical choice, however for (mobile) agents in an agent system,
dynamic names have their use. For example, agent names could contain a reference to the
location where an agent resides (location-dependent names, see also Section 7), which makes
locating the agent trivial. However, for the remainder of this chapter it is assumed that princi-
pals have globally unique identifiers (GUIDs), which are static names. The term global does
not necessarily have to imply that the identifier is unique in the universe, but it suffices that
the identifier is unique within an instance of a running agent system. It can be assumed that
in any agent system, something similar to GUIDs is used to name principals.
Another property of naming is whether principals can have more than one name. For ex-
ample, if an agent has multiple names, it can use these names as pseudonyms. Pseudonyms
can be used to implement anonymity (51): an agent can use a different pseudonym for each
interaction with another agent.
To illustrate, AgentScape (20) (see Section 8) actually has two naming schemes. First, agents
are identified internally by GUIDs, which are kept private to the middleware. Second, agents
are externally visible through their (static) handles. Each agent can have more than one handle
at a time, which allows them to implement a form of anonymity as each handle is a pseudonym.
Note that naming is not sufficient for authentication as there is no mechanism to verify that a
name corresponds to the correct principal. Authentication is discussed in the next section.

3.2 Authentication: a Public Key Infrastructure
Many ways of authentication are known and used in the world. One well-known method is
the use of username and password combinations. Only if the correct password is supplied
is the user authenticated. A more elaborate scheme requires a PKI, a Public Key Infrastruc-
ture, that uses asymmetric key encryption also known as public-key cryptography (27). Every

principal (agent, user, host, etc.) that needs to be able to be authenticated creates a key-pair,
consisting of a public and a private key. These keys have the property that data encrypted with
one key can be decrypted by the other, and given one key it is computationally infeasible to
derive the other key. Every principal publishes its public key to the world, but keeps its own
private key private. The identity of a principal can now be verified by checking whether the
principal can correctly decrypt a message encrypted with the principal’s public key. Only the
real owner of that public-private key pair can decrypt the message assuming the private key
has been kept private. Whether the public key is indeed the public key of the correct principal
and not of an imposter impersonating that principal using its own generated keypair is the
task of the PKI.
The public key infrastructure is used to securely publish public keys of principals. A public
key is published together with the corresponding principal’s personalia. This combination
is called a certificate. This certificate is also (digitally) signed (25) by a Certificate Authority
(CA), after it has verified that the public key and principal are indeed legitimate, which, for
example, involves showing a passport to an official of the CA. All principals publish their
public key in the form of signed certificates. Anyone who trusts the signing CA can use that
certificate and be confident that the public key and the principal both stated in the certificate
are valid and belong to each other. In short, an agent system is able to solve the authentication
problem by using a PKI, where all principals create a public/private keypair and a trusted CA
signs all corresponding certificates.
For completeness, signing a certificate is done by adding an encrypted version of the certificate
(actually, a hash of it) to the certificate. Encryption is done with the private key of the CA,
which means that everyone can verify the signature with the public key of the CA, but nobody
can forge the signature. The public key of the CA is assumed to have been distributed securely
to all participants. Note that safely distributing the certificates of a handful of CAs is more
feasible than distributing the certificates of all participants.
In AgentScape, a public key infrastructure is installed. Agent owners, locations, and hosts
have public and private key pairs. This ensures that locations and hosts can mutually authen-
ticate and set up secure communication channels, using SSL (see Section 4).

3.3 Linking an Agent and its Owner
In many situations, an agent must be uniquely and undeniably linked to its owner (e.g., a
human or organization). This link is part of authenticating an agent and is necessary, for ex-
ample, to charge the owner if agents make purchases on the web or to help determine liability
whenever agents misbehave. This section discusses, in the context of agent based systems,
how agents can be ‘bound’ to their owner.
As mentioned before, it is assumed that an agent can be identified by a GUID. Conceptually,
an agent consists of meta-data, (executable) code, and data that an agent has ‘found’ on a
particular host. The meta-data of an agent contains at least the following: the GUID of this
agent, the name of this agent’s owner, and a signed (by the owner) hash of this agent’s code.
The signature ensures that agent and owner are bound to each other. For authentication to
succeed, it is important that the public key of an agent owner is stored in a PKI.
For example, in AgentScape, when an agent is injected, the agent platform checks if the agent
code is indeed signed. If verification is successful the agent obtains a GUID and a handle is
returned to the agent owner. Assuming the owner keeps this handle secret, it can be used
to communicate between agent and owner. Next, the injected agent is started by the agent
platform. If the agent misbehaves in some way, the owner can be contacted and be held

Security	in	Large-Scale	Open	Distributed	Multi-Agent	Systems 111

This set of security requirements forms a bare minimum for agent systems in open environ-
ments. In addition to these security requirements other requirements common to all dis-
tributed computer systems need to be addressed, such as fault tolerance, availability, backups,
traceability, etc. For agent systems in specific domains more stricter security requirements
may apply as well. For example, in privacy sensitive environments anonymity may be an
important requirement.
The remainder of this chapter focuses on the specific security requirements in order. Each
requirement is discussed in more detail and one or more possible solutions are presented.
Sections 3 and 4 discuss the prerequisites naming and authentication, and communication
security. Next, Section 5 focuses on the main security threat to an agent owner: the malicious
host. Finally, Sections 6 and 7 look at threats to a platform administrator and discuss the
malicious agent and a secure lookup service.

3. Naming and Authentication

As mentioned above, identity management is an important security requirement in an open,
distributed agent system. The ability to name principals and authenticate them is an impor-
tant part of identity management.

3.1 Naming
Before authentication can be done, principals in an agent system must first have a (unique)
identifier: a name. This name does not have to be human-readable; it can be a meaning-
less string, as long as it is machine-readable. In principle, names can be static, which means
they do not change over the lifetime of a principal, or dynamic. For humans and organiza-
tions static names are a more logical choice, however for (mobile) agents in an agent system,
dynamic names have their use. For example, agent names could contain a reference to the
location where an agent resides (location-dependent names, see also Section 7), which makes
locating the agent trivial. However, for the remainder of this chapter it is assumed that princi-
pals have globally unique identifiers (GUIDs), which are static names. The term global does
not necessarily have to imply that the identifier is unique in the universe, but it suffices that
the identifier is unique within an instance of a running agent system. It can be assumed that
in any agent system, something similar to GUIDs is used to name principals.
Another property of naming is whether principals can have more than one name. For ex-
ample, if an agent has multiple names, it can use these names as pseudonyms. Pseudonyms
can be used to implement anonymity (51): an agent can use a different pseudonym for each
interaction with another agent.
To illustrate, AgentScape (20) (see Section 8) actually has two naming schemes. First, agents
are identified internally by GUIDs, which are kept private to the middleware. Second, agents
are externally visible through their (static) handles. Each agent can have more than one handle
at a time, which allows them to implement a form of anonymity as each handle is a pseudonym.
Note that naming is not sufficient for authentication as there is no mechanism to verify that a
name corresponds to the correct principal. Authentication is discussed in the next section.

3.2 Authentication: a Public Key Infrastructure
Many ways of authentication are known and used in the world. One well-known method is
the use of username and password combinations. Only if the correct password is supplied
is the user authenticated. A more elaborate scheme requires a PKI, a Public Key Infrastruc-
ture, that uses asymmetric key encryption also known as public-key cryptography (27). Every

principal (agent, user, host, etc.) that needs to be able to be authenticated creates a key-pair,
consisting of a public and a private key. These keys have the property that data encrypted with
one key can be decrypted by the other, and given one key it is computationally infeasible to
derive the other key. Every principal publishes its public key to the world, but keeps its own
private key private. The identity of a principal can now be verified by checking whether the
principal can correctly decrypt a message encrypted with the principal’s public key. Only the
real owner of that public-private key pair can decrypt the message assuming the private key
has been kept private. Whether the public key is indeed the public key of the correct principal
and not of an imposter impersonating that principal using its own generated keypair is the
task of the PKI.
The public key infrastructure is used to securely publish public keys of principals. A public
key is published together with the corresponding principal’s personalia. This combination
is called a certificate. This certificate is also (digitally) signed (25) by a Certificate Authority
(CA), after it has verified that the public key and principal are indeed legitimate, which, for
example, involves showing a passport to an official of the CA. All principals publish their
public key in the form of signed certificates. Anyone who trusts the signing CA can use that
certificate and be confident that the public key and the principal both stated in the certificate
are valid and belong to each other. In short, an agent system is able to solve the authentication
problem by using a PKI, where all principals create a public/private keypair and a trusted CA
signs all corresponding certificates.
For completeness, signing a certificate is done by adding an encrypted version of the certificate
(actually, a hash of it) to the certificate. Encryption is done with the private key of the CA,
which means that everyone can verify the signature with the public key of the CA, but nobody
can forge the signature. The public key of the CA is assumed to have been distributed securely
to all participants. Note that safely distributing the certificates of a handful of CAs is more
feasible than distributing the certificates of all participants.
In AgentScape, a public key infrastructure is installed. Agent owners, locations, and hosts
have public and private key pairs. This ensures that locations and hosts can mutually authen-
ticate and set up secure communication channels, using SSL (see Section 4).

3.3 Linking an Agent and its Owner
In many situations, an agent must be uniquely and undeniably linked to its owner (e.g., a
human or organization). This link is part of authenticating an agent and is necessary, for ex-
ample, to charge the owner if agents make purchases on the web or to help determine liability
whenever agents misbehave. This section discusses, in the context of agent based systems,
how agents can be ‘bound’ to their owner.
As mentioned before, it is assumed that an agent can be identified by a GUID. Conceptually,
an agent consists of meta-data, (executable) code, and data that an agent has ‘found’ on a
particular host. The meta-data of an agent contains at least the following: the GUID of this
agent, the name of this agent’s owner, and a signed (by the owner) hash of this agent’s code.
The signature ensures that agent and owner are bound to each other. For authentication to
succeed, it is important that the public key of an agent owner is stored in a PKI.
For example, in AgentScape, when an agent is injected, the agent platform checks if the agent
code is indeed signed. If verification is successful the agent obtains a GUID and a handle is
returned to the agent owner. Assuming the owner keeps this handle secret, it can be used
to communicate between agent and owner. Next, the injected agent is started by the agent
platform. If the agent misbehaves in some way, the owner can be contacted and be held

Autonomous	Agents112

responsible for the agent’s actions. The agent injection procedure is similar in other agent
systems.

4. Communication Security

In distributed agent systems communication is manifold. The (distributed) components that
make up the agent system’s middleware need to communicate with each other to maintain a
running agent platform, and the agents themselves communicate with each other, with (ex-
ternal) services, and with the platform. Confidentiality of communication between agents,
services, hosts, etc. must be guaranteed. Threats can be external or internal. External eaves-
droppers may want to listen in on agents to find out privacy-related information, may want
to disrupt the agent platform, or may want to impersonate other agents or services, etc.

4.1 Common Security Attacks
Many types of attacks are known that target communication channels. Two very common
attacks are man-in-the-middle attacks and replay attacks. This section briefly explains these
two attacks to illustrate the kind of attacks possible on communication channels. For clarity,
the names Alice, Bob, and Mallory, which are commonly used in cryptography, are used to
explain these security attacks.
With a man-in-the-middle attack, an attacker (Mallory) tries to put himself in between the
communication path of two others (Bob and Alice). When Bob tries to contact Alice, Mallory
steps in posing as Alice, and forwards the request to Alice, but now pretending to be Bob. As
a result, Bob and Alice both think they are talking privately to each other, while in fact Mallory
is able to intercept all data that is sent by them. This form of attack succeeds if Mallory is
able to impersonate Bob and Alice successfully. A replay attack is a threat where an attacker
deliberately resends or delays messages that were sent previously. Since the attacker does not
alter messages, the receiving party does not have any reason to refuse incoming messages,
unless it has the ability to detect that a message is a resent copy or an old delayed message.
To see the effect of a replay attack, consider the consequences of a message that contains a
money-transfer order for an online bank application.

4.2 Encryption
A common technique to guarantee confidentiality and integrity of communication is encryp-
tion. Two well-known techniques are SSL-based communication (32) and IPsec (26). SSL is
widely used to provide secure connections to webservers (e.g., the https protocol). All data
sent over a connection between two parties is encrypted with a shared-key. The key is ex-
changed in a hand-shake phase during the setup of the connection. Authentication, that is,
the method to ensure that a party actually is who he/she claims to be, usually involves a
certificate signed by a trusted third party (i.e., a certificate authority) whom both communi-
cating parties trust. After the hand-shake successfully completes, both parties can be assured
that their communication remains confidential. In agent systems, the setup of the encrypted
SSL-connection is usually done by the agent middleware. As a consequence, the agent mid-
dleware’s internal communication is also secure. In addition, all agent-to-agent communica-
tion is automatically encrypted transparently, under the assumption that communication is
supported by the agent middleware, which is almost always the case.
The other technique is IPsec. This protocol uses encryption at a much lower level than SSL
does. SSL uses encryption at the application level, which means the encryption is performed

by the application, an agent platform. In contrast, IPsec is performed by the underlying oper-
ating system. The advantage of this technique is that both agent application developers and
agent system developers have secure communication available to them automatically. How-
ever, most agent platforms provide their own secure communication (usually via SSL) as it is
relatively simple to implement and they then do not have to rely on the underlying operating
system to support IPsec.
For example, AgentScape currently supports SSL-based communication between hosts and
locations. This provides the basis for hosts/locations to authenticate each other. Further-
more, all messages transmitted between hosts/locations, including migration of agents, are
encrypted to ensure confidentiality. The PKI is used to link host/location identities in a secure
manner.

5. Malicious Hosts

To an agent owner, protecting an agent’s code and the data it has acquired while traversing a
network is his main security concern. Especially, when agents are used in open environments
such as the Internet, where agents execute outside the control of the agent’s owner. Hosts
on which an agent resides may be malicious, yet temporarily have complete control of the
agent’s runtime environment. It is often infeasible to determine the trustworthiness of hosts
in advance in open environments.
Unfortunately, in practice, it is almost impossible to protect a migrating agent if it runs on
hosts that are outside the control of an agent’s owner. Such a malicious host can view and
alter an agent’s (internal) state, or even delete the agent altogether. However, some hardware
and software solutions exist that try to provide security guarantees or at least allow others
to detect that an agent has been tampered with by a malicious host. Below some of these
solutions are discussed.
In principle, protecting agents from malicious hosts requires (39):

1. Protecting the integrity of the migration path of an agent

2. Protecting the integrity of the agent’s data and (binary) code

3. Ensuring confidentiality of the agent’s data

4. Ensuring integrity of the agent’s control flow

The migration of an agent from one host to another is called a migration step. A migration
path is a sequence of multiple migration steps that identifies all the hosts, in order, an agent
has visited. In principle, the integrity of the migration path (item 1, above) forms the basis
for detecting malicious hosts and/or preventing them from doing any harm. For example, a
number of techniques (6; 22; 39; 43) have integrity of agent migration paths as a premise, and
can be used to detect tampering with the agent (items 2 & 4). Solutions to protect an agent’s
migration paths are discussed in more detail at the end of this section (Section 5.5). Before
that, some solutions to protect an agent’s integrity, confidentiality, and control flow are briefly
presented.

5.1 Trusted Hardware
A technique that in principle can offer the most protection is using trusted hardware (Trusted
Computing (49)). Trusted hardware, such as the Trusted Platform Module (TPM), provides
guarantees of the hardware’s behavior. A TPM is a piece of hardware within a computer that
cannot be tampered with. It can perform cryptographic functions and store cryptographic

Security	in	Large-Scale	Open	Distributed	Multi-Agent	Systems 113

responsible for the agent’s actions. The agent injection procedure is similar in other agent
systems.

4. Communication Security

In distributed agent systems communication is manifold. The (distributed) components that
make up the agent system’s middleware need to communicate with each other to maintain a
running agent platform, and the agents themselves communicate with each other, with (ex-
ternal) services, and with the platform. Confidentiality of communication between agents,
services, hosts, etc. must be guaranteed. Threats can be external or internal. External eaves-
droppers may want to listen in on agents to find out privacy-related information, may want
to disrupt the agent platform, or may want to impersonate other agents or services, etc.

4.1 Common Security Attacks
Many types of attacks are known that target communication channels. Two very common
attacks are man-in-the-middle attacks and replay attacks. This section briefly explains these
two attacks to illustrate the kind of attacks possible on communication channels. For clarity,
the names Alice, Bob, and Mallory, which are commonly used in cryptography, are used to
explain these security attacks.
With a man-in-the-middle attack, an attacker (Mallory) tries to put himself in between the
communication path of two others (Bob and Alice). When Bob tries to contact Alice, Mallory
steps in posing as Alice, and forwards the request to Alice, but now pretending to be Bob. As
a result, Bob and Alice both think they are talking privately to each other, while in fact Mallory
is able to intercept all data that is sent by them. This form of attack succeeds if Mallory is
able to impersonate Bob and Alice successfully. A replay attack is a threat where an attacker
deliberately resends or delays messages that were sent previously. Since the attacker does not
alter messages, the receiving party does not have any reason to refuse incoming messages,
unless it has the ability to detect that a message is a resent copy or an old delayed message.
To see the effect of a replay attack, consider the consequences of a message that contains a
money-transfer order for an online bank application.

4.2 Encryption
A common technique to guarantee confidentiality and integrity of communication is encryp-
tion. Two well-known techniques are SSL-based communication (32) and IPsec (26). SSL is
widely used to provide secure connections to webservers (e.g., the https protocol). All data
sent over a connection between two parties is encrypted with a shared-key. The key is ex-
changed in a hand-shake phase during the setup of the connection. Authentication, that is,
the method to ensure that a party actually is who he/she claims to be, usually involves a
certificate signed by a trusted third party (i.e., a certificate authority) whom both communi-
cating parties trust. After the hand-shake successfully completes, both parties can be assured
that their communication remains confidential. In agent systems, the setup of the encrypted
SSL-connection is usually done by the agent middleware. As a consequence, the agent mid-
dleware’s internal communication is also secure. In addition, all agent-to-agent communica-
tion is automatically encrypted transparently, under the assumption that communication is
supported by the agent middleware, which is almost always the case.
The other technique is IPsec. This protocol uses encryption at a much lower level than SSL
does. SSL uses encryption at the application level, which means the encryption is performed

by the application, an agent platform. In contrast, IPsec is performed by the underlying oper-
ating system. The advantage of this technique is that both agent application developers and
agent system developers have secure communication available to them automatically. How-
ever, most agent platforms provide their own secure communication (usually via SSL) as it is
relatively simple to implement and they then do not have to rely on the underlying operating
system to support IPsec.
For example, AgentScape currently supports SSL-based communication between hosts and
locations. This provides the basis for hosts/locations to authenticate each other. Further-
more, all messages transmitted between hosts/locations, including migration of agents, are
encrypted to ensure confidentiality. The PKI is used to link host/location identities in a secure
manner.

5. Malicious Hosts

To an agent owner, protecting an agent’s code and the data it has acquired while traversing a
network is his main security concern. Especially, when agents are used in open environments
such as the Internet, where agents execute outside the control of the agent’s owner. Hosts
on which an agent resides may be malicious, yet temporarily have complete control of the
agent’s runtime environment. It is often infeasible to determine the trustworthiness of hosts
in advance in open environments.
Unfortunately, in practice, it is almost impossible to protect a migrating agent if it runs on
hosts that are outside the control of an agent’s owner. Such a malicious host can view and
alter an agent’s (internal) state, or even delete the agent altogether. However, some hardware
and software solutions exist that try to provide security guarantees or at least allow others
to detect that an agent has been tampered with by a malicious host. Below some of these
solutions are discussed.
In principle, protecting agents from malicious hosts requires (39):

1. Protecting the integrity of the migration path of an agent

2. Protecting the integrity of the agent’s data and (binary) code

3. Ensuring confidentiality of the agent’s data

4. Ensuring integrity of the agent’s control flow

The migration of an agent from one host to another is called a migration step. A migration
path is a sequence of multiple migration steps that identifies all the hosts, in order, an agent
has visited. In principle, the integrity of the migration path (item 1, above) forms the basis
for detecting malicious hosts and/or preventing them from doing any harm. For example, a
number of techniques (6; 22; 39; 43) have integrity of agent migration paths as a premise, and
can be used to detect tampering with the agent (items 2 & 4). Solutions to protect an agent’s
migration paths are discussed in more detail at the end of this section (Section 5.5). Before
that, some solutions to protect an agent’s integrity, confidentiality, and control flow are briefly
presented.

5.1 Trusted Hardware
A technique that in principle can offer the most protection is using trusted hardware (Trusted
Computing (49)). Trusted hardware, such as the Trusted Platform Module (TPM), provides
guarantees of the hardware’s behavior. A TPM is a piece of hardware within a computer that
cannot be tampered with. It can perform cryptographic functions and store cryptographic

Autonomous	Agents114

keys securely. Software manufacturers can use a TPM to guarantee users that their software
running on a host has not been tampered with. A TPM can create a hash of the hardware
and software of a computer and check whether anything has been modified. Agents can use
this information to detect whether to trust a host or not, depending on whether they trust the
software manufacturer who created the agent middleware running on the host.
Another use of a TPM is for an agent to let certain critical operations be performed by a TPM.
An agent sends any input encrypted to the TPM, the TPM then operates on the data and
sends the result back to the agent. The result is encrypted in such a way that only the agent’s
owner can decrypt it after the agent returns to its owner. Unfortunately, both uses of the TPM
require specialized hardware. Requiring all computers to have specialized hardware restricts
the use of it for agent systems in an open environment. Therefore, the remainder of this section
focuses on software-only techniques.

5.2 Protecting an Agent’s Integrity
An agent needs to protect both it’s agent code as well as any data it carries. As mentioned
before, without trusted hardware, an agent cannot protect this data from being modified by a
malicious host. However, it is possible for an agent to detect, after a migration from a poten-
tially malicious host, whether that host has made any unwanted modifications to the agent’s
code and/or any data that the agent carried. The solution is the use of digital signatures.
To protect an agent’s code, the agent carries a signature from the agent owner over a hash
of the agent’s code. After migration, an agent platform checks whether the agent owner is
authorized (trusted) to run agents and whether the signed hash in the agent matches the actual
hash of the agent’s code it received. If not, then the agent has been modified and the agent
platform can notify the agent’s owner and refuse to start the agent. Since only the agent
owner can generate this signature, a malicious host cannot modify the agent’s code without
being detected.
The data that an agent carries can be protected as follows. A hash is calculated of each piece of
data that needs to be protected. Then all these hashes are stored in a table together with some
meta-data on each piece of data, such as its location within an agent. This table is then signed
and stored within the agent. If a malicious host modifies or removes a part of the protected
data or the table, the signature will not match and the modification will be detectable by the
agent or the agent owner.
Unfortunately, an agent cannot carry its own private key to sign data, because a malicious
host would then also have access to it and be able to fake signatures. Consequently, an agent
cannot sign its own data. Instead, an agent owner or a trusted third party should sign the
table. The agent has to migrate to the agent owner’s host or to the trusted third party’s host
first to get the signature. Migration to a trusted host makes this scheme a little cumbersome.
If, however, the migration path of an agent can be securely tracked (migration path integrity),
other solutions become possible (6; 22; 39; 43).

5.3 Protecting an Agent’s Confidentiality
To protect a malicious host from reading confidential data that an agent carries, it is sufficient
to encrypt that data with the public key of the agent’s owner, which ensures that only the
agent’s owner can read the data after the agent has returned to the owner. Encryption can be
done by an agent itself on the (trusted) host where it has acquired the data. Unfortunately,
after encryption an agent itself does not have access to the data either. If it needs access to

encrypted data and it trusts the host it is on, it can set up a secure connection to the agent’s
owner and ask it to decrypt the data.

5.4 Protecting an Agent’s Control Flow
Unfortunately, protecting an agent’s control flow on a malicious host is virtually impossible
without dedicated trusted hardware. Basically, an agent would need to control (or at least
monitor) the runtime environment of the host on which it runs, which is impossible as the
host controls it. For example, a malicious host could deny or limit access to resources that an
agent has previously negotiated for. If the agent does not check for this, it would never notice
the fraud. Even worse, even if an agent checks for fraud, a really malicious host could change
the control-flow of the agent to skip this check.
The best an agent can do is to use the techniques described above to protect the confidentiality
and integrity of the data it carries, to at least detect whether the agent has been tampered with.
The agent can then can redo its operation again at a more trusted host after migration.

5.5 Protecting an Agent’s Migration Path
One fundamental (and unsolvable) problem for agent migration is that a malicious host can
always delete an agent in its entirety. This can never be prevented. However, it is possible to
detect which host deleted an agent. The only thing that is needed for this is the preservation
of the integrity of the migration path of an agent. An agent owner can then simply follow the
migration path of an agent and conclude which host deleted the agent. Of course for this to
work, a malicious host should not be able to forge the migration history of an agent. Once a
malicious host is identified as such, the host can be put on a black list, thereby preventing fur-
ther malicious behavior of the host in question. The main focus of this section is the detection
of breaches of integrity in migration paths of mobile agents.
The host on which an agent is initialized, is assumed to be trusted by the agent’s owner. This
host can be traced by all other hosts at any arbitrary moment in time. Hosts are assumed to
have full control over the agents they run. The consequence of this assumption is that hosts
are able to read and alter information stored inside agents. Although agents can decide to only
migrate to trusted hosts, that is, hosts that have a valid (signed) certificate, a trust relationship
does not give full guarantees with respect to a host’s behavior and intentions.
A number of solutions exist to protect the integrity of an agent’s migration path. A possible
solution uses a centralized trusted third party (TTP) (15) to authorize and keep track of mi-
gration paths of agents. The trusted third party can be physically located elsewhere and does
not have to be part of the agent system itself. However, all users of an agent system must trust
that the trusted third party is not malicious and cannot be compromised. Secure communi-
cation channels (see Section 4) to the TTP and digital signatures (25) (see also 5.2) are used
to secure the migration protocol against fraud. Unfortunately, malicious hosts can simply
migrate an agent between them without informing the TTP. Furthermore, a centralized TTP
forms a single point of failure and can become a performance bottleneck for large-scale agent
systems. Multiple TTPs can be used to improve scalability. For example, in the home based
approach, each agent uses its own initial (trusted) host as its TTP. Alternatively, Roth (39) uses
co-operating agents that use each other as TTP.
A decentralized solution to secure the migration path of an agent is signature chaining (45),
which stores an agent’s migration path in an agent itself, together with an agent’s code and
data. Digital signatures are used to protect the migration path against tampering by a mali-
cious host. In this method, each host adds the next migration step to the migration path that

Security	in	Large-Scale	Open	Distributed	Multi-Agent	Systems 115

keys securely. Software manufacturers can use a TPM to guarantee users that their software
running on a host has not been tampered with. A TPM can create a hash of the hardware
and software of a computer and check whether anything has been modified. Agents can use
this information to detect whether to trust a host or not, depending on whether they trust the
software manufacturer who created the agent middleware running on the host.
Another use of a TPM is for an agent to let certain critical operations be performed by a TPM.
An agent sends any input encrypted to the TPM, the TPM then operates on the data and
sends the result back to the agent. The result is encrypted in such a way that only the agent’s
owner can decrypt it after the agent returns to its owner. Unfortunately, both uses of the TPM
require specialized hardware. Requiring all computers to have specialized hardware restricts
the use of it for agent systems in an open environment. Therefore, the remainder of this section
focuses on software-only techniques.

5.2 Protecting an Agent’s Integrity
An agent needs to protect both it’s agent code as well as any data it carries. As mentioned
before, without trusted hardware, an agent cannot protect this data from being modified by a
malicious host. However, it is possible for an agent to detect, after a migration from a poten-
tially malicious host, whether that host has made any unwanted modifications to the agent’s
code and/or any data that the agent carried. The solution is the use of digital signatures.
To protect an agent’s code, the agent carries a signature from the agent owner over a hash
of the agent’s code. After migration, an agent platform checks whether the agent owner is
authorized (trusted) to run agents and whether the signed hash in the agent matches the actual
hash of the agent’s code it received. If not, then the agent has been modified and the agent
platform can notify the agent’s owner and refuse to start the agent. Since only the agent
owner can generate this signature, a malicious host cannot modify the agent’s code without
being detected.
The data that an agent carries can be protected as follows. A hash is calculated of each piece of
data that needs to be protected. Then all these hashes are stored in a table together with some
meta-data on each piece of data, such as its location within an agent. This table is then signed
and stored within the agent. If a malicious host modifies or removes a part of the protected
data or the table, the signature will not match and the modification will be detectable by the
agent or the agent owner.
Unfortunately, an agent cannot carry its own private key to sign data, because a malicious
host would then also have access to it and be able to fake signatures. Consequently, an agent
cannot sign its own data. Instead, an agent owner or a trusted third party should sign the
table. The agent has to migrate to the agent owner’s host or to the trusted third party’s host
first to get the signature. Migration to a trusted host makes this scheme a little cumbersome.
If, however, the migration path of an agent can be securely tracked (migration path integrity),
other solutions become possible (6; 22; 39; 43).

5.3 Protecting an Agent’s Confidentiality
To protect a malicious host from reading confidential data that an agent carries, it is sufficient
to encrypt that data with the public key of the agent’s owner, which ensures that only the
agent’s owner can read the data after the agent has returned to the owner. Encryption can be
done by an agent itself on the (trusted) host where it has acquired the data. Unfortunately,
after encryption an agent itself does not have access to the data either. If it needs access to

encrypted data and it trusts the host it is on, it can set up a secure connection to the agent’s
owner and ask it to decrypt the data.

5.4 Protecting an Agent’s Control Flow
Unfortunately, protecting an agent’s control flow on a malicious host is virtually impossible
without dedicated trusted hardware. Basically, an agent would need to control (or at least
monitor) the runtime environment of the host on which it runs, which is impossible as the
host controls it. For example, a malicious host could deny or limit access to resources that an
agent has previously negotiated for. If the agent does not check for this, it would never notice
the fraud. Even worse, even if an agent checks for fraud, a really malicious host could change
the control-flow of the agent to skip this check.
The best an agent can do is to use the techniques described above to protect the confidentiality
and integrity of the data it carries, to at least detect whether the agent has been tampered with.
The agent can then can redo its operation again at a more trusted host after migration.

5.5 Protecting an Agent’s Migration Path
One fundamental (and unsolvable) problem for agent migration is that a malicious host can
always delete an agent in its entirety. This can never be prevented. However, it is possible to
detect which host deleted an agent. The only thing that is needed for this is the preservation
of the integrity of the migration path of an agent. An agent owner can then simply follow the
migration path of an agent and conclude which host deleted the agent. Of course for this to
work, a malicious host should not be able to forge the migration history of an agent. Once a
malicious host is identified as such, the host can be put on a black list, thereby preventing fur-
ther malicious behavior of the host in question. The main focus of this section is the detection
of breaches of integrity in migration paths of mobile agents.
The host on which an agent is initialized, is assumed to be trusted by the agent’s owner. This
host can be traced by all other hosts at any arbitrary moment in time. Hosts are assumed to
have full control over the agents they run. The consequence of this assumption is that hosts
are able to read and alter information stored inside agents. Although agents can decide to only
migrate to trusted hosts, that is, hosts that have a valid (signed) certificate, a trust relationship
does not give full guarantees with respect to a host’s behavior and intentions.
A number of solutions exist to protect the integrity of an agent’s migration path. A possible
solution uses a centralized trusted third party (TTP) (15) to authorize and keep track of mi-
gration paths of agents. The trusted third party can be physically located elsewhere and does
not have to be part of the agent system itself. However, all users of an agent system must trust
that the trusted third party is not malicious and cannot be compromised. Secure communi-
cation channels (see Section 4) to the TTP and digital signatures (25) (see also 5.2) are used
to secure the migration protocol against fraud. Unfortunately, malicious hosts can simply
migrate an agent between them without informing the TTP. Furthermore, a centralized TTP
forms a single point of failure and can become a performance bottleneck for large-scale agent
systems. Multiple TTPs can be used to improve scalability. For example, in the home based
approach, each agent uses its own initial (trusted) host as its TTP. Alternatively, Roth (39) uses
co-operating agents that use each other as TTP.
A decentralized solution to secure the migration path of an agent is signature chaining (45),
which stores an agent’s migration path in an agent itself, together with an agent’s code and
data. Digital signatures are used to protect the migration path against tampering by a mali-
cious host. In this method, each host adds the next migration step to the migration path that

Autonomous	Agents116

was already stored in the agent and signs the entire path, including the signatures of previ-
ous hosts in the migration paths. By signing the entire migration path the signatures of all
participating hosts are chained together. Each new migration step adds another connected
link to the signature chain. Unfortunately, verifying long signature chains is computationally
intensive, and a malicious host can remove arbitrary cycles from a migration path if an agent
(accidentally) visits the same malicious host for a second time (45).
Another scalable solution that uses the notion of distributed trust to secure migration paths
is described in (53). In this solution, other hosts in the migration path authorize and check
each following migration step. Increasing the number of hosts required to authorize a migra-
tion makes the migration protocol more resistant to co-operating malicious hosts. Spreading
trust over multiple hosts in an agent system clearly has benefits in terms of scalability and it
strengthens the security mechanism, as a ‘single point of failure’ no longer exists. Orthogo-
nally, a dedicated trust model that can distinguish the –relative– trustworthiness of hosts in
multiple agent systems can be of much additional value. Reputation and trust models (1) have
been studied in the context of agent systems by, for example, (19; 36).

6. Malicious Agents

The previous section discusses the malicious host problem. This section focuses on the com-
plementary problem: malicious agents. Just as agent owners want to protect their agents
against potentially malicious hosts, so do platform administrators want to protect their hosts
against potentially malicious migrating agents. Malicious agents typically attempt to gain ac-
cess to resources on a host they are not authorized to use. Such access includes attempts to
access private data of the host, private data of other agents, or to use additional computational
resources that have not been negotiated. Fortunately, there are a number of techniques that
a platform administrator can apply to reduce the threat of malicious agents and control their
access to a host’s resources. This section discusses a few of these techniques and subsequently
focuses on the subject on how to configure and manage access to resources for agents.

6.1 Sandboxing Agents
Most solutions to securing hosts from malicious agents entail monitoring every action that an
agent attempts on a host. Whenever an agent makes a call to the middleware API, it is inter-
cepted by a security manager. The security manager checks the system policy to determine if
an action, such as migration and resource access, should be allowed or denied. For example, a
host could decide that it does not allow agents to use remote web-services (i.e., not running on
the local host). Every attempt to contact a remote web-service will be blocked by the security
manager.
Many agent platforms are Java-based (14), and in Java one of the primary solutions towards
securing mobile code is to execute any remote code in a protection domain or sandbox. A
sandbox limits the set of operations that the remote code may call. For example, sandboxing
typically restricts network access as well as access to the local filesystem. Java provides agent
system programmers the tools to define sandboxes by using a security manager and/or custom
class loaders. In Java the actual sandbox is enforced and implemented by the underlying JVM,
for interpreted scripting languages such as Python and Safe-Tcl the sandbox is implemented
by the interpreter. For C or C++ (binary code) agents are ‘jailed’ (50).
Sandboxing and jailing are examples of solutions with which agents are run in contained
environments limiting the amount of damage they can cause to the systems on which they
run. An alternative solution is to only run agents of trusted owners. Whom to trust is up to

the platform administrator. In this solution, agents are only trusted if they are signed by a
reputable software manufacturer, whom the user trusts not to provide malicious agents. The
simplicity of this scheme is also its weakness: the security of the system lies in the belief that
the signer is trustworthy. The weakness of this system has already been shown as digital
signing certificates have been issued to people masquerading as a representative of a well
known software maker (12). Furthermore, small and open source software makers may not
have the financial capability to purchase such signing certificates. Of course, digital signatures
can be combined with sandboxing to create a more robust security solution.
Finally, a more elaborate security approach is the use of proof-carrying code (30) (applied
to the mobile agent paradigm described in (31)). Agents carry a machine-verifiable proof with
them that specifies their expected and acceptable behavior. Each host is equipped with a the-
orem prover to ensure that an agent’s code indeed adheres to its specification. Unfortunately,
constructing the proof is very labor intensive (21), which makes this approach less practical.
Sandboxes and security managers restrict an agent’s actions. However, a security manager
first needs to know when to allow or deny an agent’s request to access a resource: access con-
trol. In a flexible environment, principals may first want to negotiate about which resources
they need, to what extent, and at what price. The outcome of this resource negotiation is input
to the security manager that monitors and authorizes access to resources as negotiated. For
example, the WS-Agreement standard (3) which provides a negotiation protocol for the do-
main of web services can be used. Mobach (28) has applied and extended this standard in the
field of distributed agent systems.
Specifying security permissions can be an elaborate job, prone to mistakes. The remainder of
this section discusses how the combination of roles and sets of predefined policies simplify
this task. Security policies allow users of agent systems to manage the security features of the
multi-agent system of their choice. Developers of agent systems have the opportunity to ship
a number of security policies with their software. For example, an effective default policy is
one that will not prevent users from performing vital tasks, but will protect the host against
some of the most common security issues. In contrast, ‘high security’ policies should be used
in security critical environments. Such policies are very restrictive. Below a security policy
framework is discussed and illustrated within AgentScape (20).

6.2 Resource Access Control
Once the basic security features, such as an agent naming scheme and authentication (see
Section 3), are in place, the next requirement is an authorization mechanism. Conceptually,
an authorization mechanism needs to specify who is allowed to do what and to what extent.
There are a number of principals involved in any agent platform. For example, principals
in AgentScape are locations, world administrators, resources and their administrators, and
agents and their owners. Similar principals can be identified in any other agent platform.
In any agent platform agents can perform a number of basic actions to achieve their goals,
such as communication, migration, access to resources, etc. Controlling which principal can
perform which action is a structure that can be readily managed using a Role Based Access
Control (RBAC) (44; 54) mechanism.

6.3 Roles, Users, and Permissions
RBAC is an access control architecture that models roles, users and permissions. RBAC is
designed to reflect real-world relations between users and permissions. Each role is associated
with a set of permissions corresponding to logical tasks that users can perform. Users are

Security	in	Large-Scale	Open	Distributed	Multi-Agent	Systems 117

was already stored in the agent and signs the entire path, including the signatures of previ-
ous hosts in the migration paths. By signing the entire migration path the signatures of all
participating hosts are chained together. Each new migration step adds another connected
link to the signature chain. Unfortunately, verifying long signature chains is computationally
intensive, and a malicious host can remove arbitrary cycles from a migration path if an agent
(accidentally) visits the same malicious host for a second time (45).
Another scalable solution that uses the notion of distributed trust to secure migration paths
is described in (53). In this solution, other hosts in the migration path authorize and check
each following migration step. Increasing the number of hosts required to authorize a migra-
tion makes the migration protocol more resistant to co-operating malicious hosts. Spreading
trust over multiple hosts in an agent system clearly has benefits in terms of scalability and it
strengthens the security mechanism, as a ‘single point of failure’ no longer exists. Orthogo-
nally, a dedicated trust model that can distinguish the –relative– trustworthiness of hosts in
multiple agent systems can be of much additional value. Reputation and trust models (1) have
been studied in the context of agent systems by, for example, (19; 36).

6. Malicious Agents

The previous section discusses the malicious host problem. This section focuses on the com-
plementary problem: malicious agents. Just as agent owners want to protect their agents
against potentially malicious hosts, so do platform administrators want to protect their hosts
against potentially malicious migrating agents. Malicious agents typically attempt to gain ac-
cess to resources on a host they are not authorized to use. Such access includes attempts to
access private data of the host, private data of other agents, or to use additional computational
resources that have not been negotiated. Fortunately, there are a number of techniques that
a platform administrator can apply to reduce the threat of malicious agents and control their
access to a host’s resources. This section discusses a few of these techniques and subsequently
focuses on the subject on how to configure and manage access to resources for agents.

6.1 Sandboxing Agents
Most solutions to securing hosts from malicious agents entail monitoring every action that an
agent attempts on a host. Whenever an agent makes a call to the middleware API, it is inter-
cepted by a security manager. The security manager checks the system policy to determine if
an action, such as migration and resource access, should be allowed or denied. For example, a
host could decide that it does not allow agents to use remote web-services (i.e., not running on
the local host). Every attempt to contact a remote web-service will be blocked by the security
manager.
Many agent platforms are Java-based (14), and in Java one of the primary solutions towards
securing mobile code is to execute any remote code in a protection domain or sandbox. A
sandbox limits the set of operations that the remote code may call. For example, sandboxing
typically restricts network access as well as access to the local filesystem. Java provides agent
system programmers the tools to define sandboxes by using a security manager and/or custom
class loaders. In Java the actual sandbox is enforced and implemented by the underlying JVM,
for interpreted scripting languages such as Python and Safe-Tcl the sandbox is implemented
by the interpreter. For C or C++ (binary code) agents are ‘jailed’ (50).
Sandboxing and jailing are examples of solutions with which agents are run in contained
environments limiting the amount of damage they can cause to the systems on which they
run. An alternative solution is to only run agents of trusted owners. Whom to trust is up to

the platform administrator. In this solution, agents are only trusted if they are signed by a
reputable software manufacturer, whom the user trusts not to provide malicious agents. The
simplicity of this scheme is also its weakness: the security of the system lies in the belief that
the signer is trustworthy. The weakness of this system has already been shown as digital
signing certificates have been issued to people masquerading as a representative of a well
known software maker (12). Furthermore, small and open source software makers may not
have the financial capability to purchase such signing certificates. Of course, digital signatures
can be combined with sandboxing to create a more robust security solution.
Finally, a more elaborate security approach is the use of proof-carrying code (30) (applied
to the mobile agent paradigm described in (31)). Agents carry a machine-verifiable proof with
them that specifies their expected and acceptable behavior. Each host is equipped with a the-
orem prover to ensure that an agent’s code indeed adheres to its specification. Unfortunately,
constructing the proof is very labor intensive (21), which makes this approach less practical.
Sandboxes and security managers restrict an agent’s actions. However, a security manager
first needs to know when to allow or deny an agent’s request to access a resource: access con-
trol. In a flexible environment, principals may first want to negotiate about which resources
they need, to what extent, and at what price. The outcome of this resource negotiation is input
to the security manager that monitors and authorizes access to resources as negotiated. For
example, the WS-Agreement standard (3) which provides a negotiation protocol for the do-
main of web services can be used. Mobach (28) has applied and extended this standard in the
field of distributed agent systems.
Specifying security permissions can be an elaborate job, prone to mistakes. The remainder of
this section discusses how the combination of roles and sets of predefined policies simplify
this task. Security policies allow users of agent systems to manage the security features of the
multi-agent system of their choice. Developers of agent systems have the opportunity to ship
a number of security policies with their software. For example, an effective default policy is
one that will not prevent users from performing vital tasks, but will protect the host against
some of the most common security issues. In contrast, ‘high security’ policies should be used
in security critical environments. Such policies are very restrictive. Below a security policy
framework is discussed and illustrated within AgentScape (20).

6.2 Resource Access Control
Once the basic security features, such as an agent naming scheme and authentication (see
Section 3), are in place, the next requirement is an authorization mechanism. Conceptually,
an authorization mechanism needs to specify who is allowed to do what and to what extent.
There are a number of principals involved in any agent platform. For example, principals
in AgentScape are locations, world administrators, resources and their administrators, and
agents and their owners. Similar principals can be identified in any other agent platform.
In any agent platform agents can perform a number of basic actions to achieve their goals,
such as communication, migration, access to resources, etc. Controlling which principal can
perform which action is a structure that can be readily managed using a Role Based Access
Control (RBAC) (44; 54) mechanism.

6.3 Roles, Users, and Permissions
RBAC is an access control architecture that models roles, users and permissions. RBAC is
designed to reflect real-world relations between users and permissions. Each role is associated
with a set of permissions corresponding to logical tasks that users can perform. Users are

Autonomous	Agents118

assigned one or more roles. The advantage of this setup is that changing the permissions
of a whole group of users with a specific role can be easily done by simply changing the
permissions of the corresponding role.
Defining roles, users and permissions can be straightforward. First a number of permissions
are defined and assigned to roles. Users are then associated with these roles. Table 1 shows
some example (Role, Permission) pairs, denoting the capabilities of each role. Note that each
role can have multiple permissions. Table 2 assigns roles to a set of users. These users are
shown as textual names, but would in practice be represented by a unique identifier.

Role Permission to perform action
BasicAgent Migrate, Execute
TrustedAgent Migrate, Execute, AccessRes
AgentOwner Inject, GetResult
ResourceAdmin AccessRes, ChangePerms, GetLogs

Table 1. RBAC Example Role Permission Table

Role User
BasicAgent SimpleAgent1, SimpleAgent2
TrustedAgent ClaireTradingAgent, DaveStockAgent
DatabaseAccess Alice, Claire
ResourceAdmin Trent, Steve

Table 2. RBAC Example Role User Table

Agent owners form the base of the trust mechanism. They are ultimately responsible for
the actions of their agents. Therefore, by default, agents hold the permissions granted to their
owners, but these permissions can be further restricted when appropriate. Access to resources
is explicitly specified in an RBAC policy.
The RBAC system can be dynamically updated, that is, roles can be changed, users can be
added or removed from roles, and permissions can be assigned and removed from roles. De-
termining, specifying, and managing roles, users, and permissions is the responsibility of an
administrator of each host. Part of this management can be delegated to (privileged) users to
keep the task manageable. For example, a database administrator can be given the right to
manage permissions to databases for which he is responsible. Agent owners can manage the
rights of their own agent. Note that an agent owner cannot give its agents more rights than
he himself has been given by a platform’s administrator.
In an open system, every agent platform is autonomous. Therefore, each host can have its own
RBAC policy. In addition, if multiple hosts co-operate in one single administrative domain
(called a location in AgentScape terminology) each administrator of a host can define different
(e.g., stricter) restrictions for its resources than a location administrator and vice versa. Both
policies are enforced together; actions are only permitted if both policies agree.

6.4 Security Manager
To enforce resource access control, every action of an agent must first be authorized by an
RBAC system before the action can be executed. Whenever an agent attempts to perform a
security relevant action, a Security Manager checks whether the agent is authorized to per-
form this action. This check is a two-step process. First, the Security Manager determines the

GUID of the agent and determines the role, or roles, of which the GUID is a member. Second,
the Security Manager determines if one or more of these roles is authorized to perform the
requested action.
It is worthwhile to note that not only a platform’s administrator, but also an agent owner needs
to trust the security manager. After an agent owner has negotiated for resources and possibly
paid for access, an agent owner expects the security manager to grant access as negotiated.
Similar to monitoring of Service Level Agreements (SLA) a trusted third party module can
be used to monitor and log the communication between client (agent) and service provider
(host) (37).

6.5 Parameterization of Permissions
A selection of the basic security relevant actions used in AgentScape is shown in Table 3. In
most agent systems similar actions can be identified. These actions reflect the basic abilities
of agents. The permissions for these actions can be extended with parameters. Parameters
are used to further refine the granularity of permissions. For example, negotiation can be
restricted to specific types of resources. Parameters are defined in parentheses. A special
parameter, ‘*’, is supported to allow all types of an action to be permitted by a role. This
notation is used to avoid having to explicitly specify every type of resource and every location
when wishing to grant access to them. Permissions are positive, that is, if access to a resource
is not explicitly granted, access is denied.

Action Principal Description
Migrate Agent Migrate from one Location to another.
Inject Owner Launch an Agent in a Location.
AccessRes Agent Access a resource provided by a location.
Negotiate Agent Negotiate access to a remote location.
Lookup Agent Access yellow or white pages lookup service.
SendMsg Location/Agent Send a message to a remote location.
RecvMsg Location/Agent Receive a message from a remote location.

Table 3. Common Security Relevant Actions

In most cases, locations and hosts typically utilize generic policies for all agents. That is, most
locations and hosts are not expected to specifically restrict access to resources, unless these
resources are of specific importance. For example, most hosts will allow all agents access to
CPU and memory resources, but access to special databases are more carefully controlled.
Parameterization simplifies expressing permissions for roles, and also allows more fine-
grained access for system resources to be defined. This can be used, for example, to define
policies that limit the locations to which agents may migrate. To illustrate parameterization
consider the Role/Permission table shown in Table 4. In this table, normal agents (BasicA-
gent) are allowed to execute and access CPU and Memory resources. Only trusted agents,
that is, agents with the role TrustedAgent, are authorized to access the price database.

Role Permission
BasicAgent Migrate(*), Execute, AccessRes(CPU,Memory)
TrustedAgent Migrate(*), Execute, AccessRes(CPU,Memory,PriceDB)

Table 4. Database Resource Role-Permission Table

Security	in	Large-Scale	Open	Distributed	Multi-Agent	Systems 119

assigned one or more roles. The advantage of this setup is that changing the permissions
of a whole group of users with a specific role can be easily done by simply changing the
permissions of the corresponding role.
Defining roles, users and permissions can be straightforward. First a number of permissions
are defined and assigned to roles. Users are then associated with these roles. Table 1 shows
some example (Role, Permission) pairs, denoting the capabilities of each role. Note that each
role can have multiple permissions. Table 2 assigns roles to a set of users. These users are
shown as textual names, but would in practice be represented by a unique identifier.

Role Permission to perform action
BasicAgent Migrate, Execute
TrustedAgent Migrate, Execute, AccessRes
AgentOwner Inject, GetResult
ResourceAdmin AccessRes, ChangePerms, GetLogs

Table 1. RBAC Example Role Permission Table

Role User
BasicAgent SimpleAgent1, SimpleAgent2
TrustedAgent ClaireTradingAgent, DaveStockAgent
DatabaseAccess Alice, Claire
ResourceAdmin Trent, Steve

Table 2. RBAC Example Role User Table

Agent owners form the base of the trust mechanism. They are ultimately responsible for
the actions of their agents. Therefore, by default, agents hold the permissions granted to their
owners, but these permissions can be further restricted when appropriate. Access to resources
is explicitly specified in an RBAC policy.
The RBAC system can be dynamically updated, that is, roles can be changed, users can be
added or removed from roles, and permissions can be assigned and removed from roles. De-
termining, specifying, and managing roles, users, and permissions is the responsibility of an
administrator of each host. Part of this management can be delegated to (privileged) users to
keep the task manageable. For example, a database administrator can be given the right to
manage permissions to databases for which he is responsible. Agent owners can manage the
rights of their own agent. Note that an agent owner cannot give its agents more rights than
he himself has been given by a platform’s administrator.
In an open system, every agent platform is autonomous. Therefore, each host can have its own
RBAC policy. In addition, if multiple hosts co-operate in one single administrative domain
(called a location in AgentScape terminology) each administrator of a host can define different
(e.g., stricter) restrictions for its resources than a location administrator and vice versa. Both
policies are enforced together; actions are only permitted if both policies agree.

6.4 Security Manager
To enforce resource access control, every action of an agent must first be authorized by an
RBAC system before the action can be executed. Whenever an agent attempts to perform a
security relevant action, a Security Manager checks whether the agent is authorized to per-
form this action. This check is a two-step process. First, the Security Manager determines the

GUID of the agent and determines the role, or roles, of which the GUID is a member. Second,
the Security Manager determines if one or more of these roles is authorized to perform the
requested action.
It is worthwhile to note that not only a platform’s administrator, but also an agent owner needs
to trust the security manager. After an agent owner has negotiated for resources and possibly
paid for access, an agent owner expects the security manager to grant access as negotiated.
Similar to monitoring of Service Level Agreements (SLA) a trusted third party module can
be used to monitor and log the communication between client (agent) and service provider
(host) (37).

6.5 Parameterization of Permissions
A selection of the basic security relevant actions used in AgentScape is shown in Table 3. In
most agent systems similar actions can be identified. These actions reflect the basic abilities
of agents. The permissions for these actions can be extended with parameters. Parameters
are used to further refine the granularity of permissions. For example, negotiation can be
restricted to specific types of resources. Parameters are defined in parentheses. A special
parameter, ‘*’, is supported to allow all types of an action to be permitted by a role. This
notation is used to avoid having to explicitly specify every type of resource and every location
when wishing to grant access to them. Permissions are positive, that is, if access to a resource
is not explicitly granted, access is denied.

Action Principal Description
Migrate Agent Migrate from one Location to another.
Inject Owner Launch an Agent in a Location.
AccessRes Agent Access a resource provided by a location.
Negotiate Agent Negotiate access to a remote location.
Lookup Agent Access yellow or white pages lookup service.
SendMsg Location/Agent Send a message to a remote location.
RecvMsg Location/Agent Receive a message from a remote location.

Table 3. Common Security Relevant Actions

In most cases, locations and hosts typically utilize generic policies for all agents. That is, most
locations and hosts are not expected to specifically restrict access to resources, unless these
resources are of specific importance. For example, most hosts will allow all agents access to
CPU and memory resources, but access to special databases are more carefully controlled.
Parameterization simplifies expressing permissions for roles, and also allows more fine-
grained access for system resources to be defined. This can be used, for example, to define
policies that limit the locations to which agents may migrate. To illustrate parameterization
consider the Role/Permission table shown in Table 4. In this table, normal agents (BasicA-
gent) are allowed to execute and access CPU and Memory resources. Only trusted agents,
that is, agents with the role TrustedAgent, are authorized to access the price database.

Role Permission
BasicAgent Migrate(*), Execute, AccessRes(CPU,Memory)
TrustedAgent Migrate(*), Execute, AccessRes(CPU,Memory,PriceDB)

Table 4. Database Resource Role-Permission Table

Autonomous	Agents120

6.6 Agent Injection
RBAC requires all users (agents, humans, etc.) to be associated with one or more roles. New
human users are usually entered into an RBAC system by a location’s administrator. However,
new agents injected by human users can be automatically added by an agent platform in
an RBAC system with the corresponding permissions as described by an agent platform’s
administrator. The agent injection protocol in AgentScape is as follows. When a principal
wishes to inject an agent into an AgentScape location, the principal first contacts the location
and they perform a two-way authentication. Once authenticated, a location will accept agents
injected into that location by a specific principal if, and only if, the principal is authorized to
perform injections.
Once an agent is injected into a location, the location assigns a GUID to the agent instance.
This GUID is also automatically entered as a new user into the Role-User table of both the
location and the host that is going to run the agent, and is assigned to, at most, the same roles
as the owner. Owner roles are defined by each location individually. In addition, default roles
can be used for unknown agents and owners. To limit the growth of a Role-User table, an
agent’s entry can be removed as soon as the agent finishes or successfully migrates to another
location. After successful migration, the GUID of the agent will be entered into the Role-
User table of the receiving location and host. If owners are removed from a role, any agent
belonging to that owner loses that role.

6.7 Security Policies
While security can be a major concern for resource and location administrators, it is not always
the case that these principals are either particularly interested, or trained to, define their own
security policies. For this reason, it is advisable to have a set of predefined default policies.
These predefined policies range from simple, non-restrictive policies, used for agent systems
deployed in a well known environment, to stronger, restrictive policies, where agent systems
operate in a more hostile environment. These two extremes are described in the context of the
following two case studies: a closed world and a hostile world.
In a simple closed world environment, locations are controlled by well known entities and are
all trusted. Communication between locations is cryptographically secured and each location
is known and trusted by every other location. The major threat to the middleware is that of
malicious agents. Agent owners must be authenticated. Once authenticated, agents are au-
thorized to perform any and all actions. Therefore, the authorization mechanism is not used
for access control, but is instead used for auditing purposes: whenever an agent performs a
security relevant action, it is logged for possible later examination by the location administra-
tor. While a simple system is common in small, closed environments, the provision of services
on the web, with the associated access of these services by software agents demonstrates that
such an environment cannot be assumed.
In a hostile environment locations are controlled by entities that are not always known by every
principal. Agents are authenticated by their initial location as before, but the authorization
mechanism is now used to enforce location-specific restrictions. The security manager moni-
tors usage of specified resources and ensures that all accesses are restricted by the negotiated
limits. Any breaches of these limits are logged and execution of the agent responsible is im-
mediately suspended. Migration is only authorized between the original ‘home’ host–the host
where the agent started–and remote hosts. Therefore, migration from one remote host to an-
other forces an agent to first return to the home host. This is enforced to prevent malicious
hosts attempting to inject or read data developed from a prior migration. For example, the

result of a price check from a prior website should not be available when performing a price
check at a competitor’s site.
Within a hostile environment, not only locations and hosts may want to constrain the actions
of agents, but also agent owners may want to restrict the actions their agents are allowed to
perform on their behalf. These actions include the ability to negotiate, migrate, inject, access
resources, purchase items on the web, etc.
In summary, the security architecture outlined in this section and illustrated within the Agent-
Scape agent system provides a flexible means to define and manage agent access to specific
functionality. Flexibility is provided in two areas: firstly, hosts and locations have the ability
to control access to resources that they control. Secondly, owners can constrain their agents
from performing actions that, while they are authorized by the locations and hosts, are not
desirable to the owner. For more information see (35).

7. Secure Lookup Service

Every distributed agent system has some way of naming agents, and a way of mapping agent
names to their location. Finding the location of an agent is useful, for example, for co-locating
agents, that is, migrating agents to run on the same host to improve performance by reducing
communication costs. Sometimes the names of agents already contain a reference to their
location (location-dependent names), in which case, resolving the name to a location becomes
trivial. However, with location-dependent names, agents do not have stable names as after
a migration their names will have changed. Such agents are more difficult to track for other
agents. With location-independent names, the names remain stable after migration, but the
agent system needs a lookup service to map an agent’s name to its current location.
A lookup service is a generic name for a global service that keeps track of where each agent
is located and how to communicate with it. Another name often used is white pages. To
prevent agents and services from impersonating other agents and services, the information in
a lookup service must be trustworthy. However, in an open environment, where anyone can
join the agent community, guarding the information in a lookup service is a challenge.
Scalable location services are essential in distributed systems and, in particular, for multi-
agent systems. Domain Name System (DNS) is a very successful realization of a location ser-
vice that resolves symbolic names to contact addresses (IP addresses). DNSSEC (Secure DNS)
has been designed to support authentication preventing spoofing and man-in-the-middle at-
tacks (4). Both DNS and DNSSEC, however, are not designed to deal with highly dynamic
entities such as mobile agents. The dynamic nature of mobile agents in Internet-scale, open
network systems requires a different type of approach for registering, deregistering, and re-
trieving location information. Scalability and integrity are of utmost importance as (up-to-
date) agent location information is a prerequisite of successful agent mobility.
This section presents an approach for a scalable and secure location service.

7.1 Information in the Lookup Service
To make a lookup service secure, the service should store not only agent-ids and their current
location, but also provide ways for its users to determine the validity (i.e., trustworthiness)
of that information. In an open environment, users of a lookup service know that a lookup
service may be compromised and may contain false information. One way to solve this prob-
lem is to have information published in the lookup service be signed by its publisher. The
validity of the information returned by a lookup server depends on the level of trust placed
in the signing publisher. Signing is done with public-key cryptography. This system requires

Security	in	Large-Scale	Open	Distributed	Multi-Agent	Systems 121

6.6 Agent Injection
RBAC requires all users (agents, humans, etc.) to be associated with one or more roles. New
human users are usually entered into an RBAC system by a location’s administrator. However,
new agents injected by human users can be automatically added by an agent platform in
an RBAC system with the corresponding permissions as described by an agent platform’s
administrator. The agent injection protocol in AgentScape is as follows. When a principal
wishes to inject an agent into an AgentScape location, the principal first contacts the location
and they perform a two-way authentication. Once authenticated, a location will accept agents
injected into that location by a specific principal if, and only if, the principal is authorized to
perform injections.
Once an agent is injected into a location, the location assigns a GUID to the agent instance.
This GUID is also automatically entered as a new user into the Role-User table of both the
location and the host that is going to run the agent, and is assigned to, at most, the same roles
as the owner. Owner roles are defined by each location individually. In addition, default roles
can be used for unknown agents and owners. To limit the growth of a Role-User table, an
agent’s entry can be removed as soon as the agent finishes or successfully migrates to another
location. After successful migration, the GUID of the agent will be entered into the Role-
User table of the receiving location and host. If owners are removed from a role, any agent
belonging to that owner loses that role.

6.7 Security Policies
While security can be a major concern for resource and location administrators, it is not always
the case that these principals are either particularly interested, or trained to, define their own
security policies. For this reason, it is advisable to have a set of predefined default policies.
These predefined policies range from simple, non-restrictive policies, used for agent systems
deployed in a well known environment, to stronger, restrictive policies, where agent systems
operate in a more hostile environment. These two extremes are described in the context of the
following two case studies: a closed world and a hostile world.
In a simple closed world environment, locations are controlled by well known entities and are
all trusted. Communication between locations is cryptographically secured and each location
is known and trusted by every other location. The major threat to the middleware is that of
malicious agents. Agent owners must be authenticated. Once authenticated, agents are au-
thorized to perform any and all actions. Therefore, the authorization mechanism is not used
for access control, but is instead used for auditing purposes: whenever an agent performs a
security relevant action, it is logged for possible later examination by the location administra-
tor. While a simple system is common in small, closed environments, the provision of services
on the web, with the associated access of these services by software agents demonstrates that
such an environment cannot be assumed.
In a hostile environment locations are controlled by entities that are not always known by every
principal. Agents are authenticated by their initial location as before, but the authorization
mechanism is now used to enforce location-specific restrictions. The security manager moni-
tors usage of specified resources and ensures that all accesses are restricted by the negotiated
limits. Any breaches of these limits are logged and execution of the agent responsible is im-
mediately suspended. Migration is only authorized between the original ‘home’ host–the host
where the agent started–and remote hosts. Therefore, migration from one remote host to an-
other forces an agent to first return to the home host. This is enforced to prevent malicious
hosts attempting to inject or read data developed from a prior migration. For example, the

result of a price check from a prior website should not be available when performing a price
check at a competitor’s site.
Within a hostile environment, not only locations and hosts may want to constrain the actions
of agents, but also agent owners may want to restrict the actions their agents are allowed to
perform on their behalf. These actions include the ability to negotiate, migrate, inject, access
resources, purchase items on the web, etc.
In summary, the security architecture outlined in this section and illustrated within the Agent-
Scape agent system provides a flexible means to define and manage agent access to specific
functionality. Flexibility is provided in two areas: firstly, hosts and locations have the ability
to control access to resources that they control. Secondly, owners can constrain their agents
from performing actions that, while they are authorized by the locations and hosts, are not
desirable to the owner. For more information see (35).

7. Secure Lookup Service

Every distributed agent system has some way of naming agents, and a way of mapping agent
names to their location. Finding the location of an agent is useful, for example, for co-locating
agents, that is, migrating agents to run on the same host to improve performance by reducing
communication costs. Sometimes the names of agents already contain a reference to their
location (location-dependent names), in which case, resolving the name to a location becomes
trivial. However, with location-dependent names, agents do not have stable names as after
a migration their names will have changed. Such agents are more difficult to track for other
agents. With location-independent names, the names remain stable after migration, but the
agent system needs a lookup service to map an agent’s name to its current location.
A lookup service is a generic name for a global service that keeps track of where each agent
is located and how to communicate with it. Another name often used is white pages. To
prevent agents and services from impersonating other agents and services, the information in
a lookup service must be trustworthy. However, in an open environment, where anyone can
join the agent community, guarding the information in a lookup service is a challenge.
Scalable location services are essential in distributed systems and, in particular, for multi-
agent systems. Domain Name System (DNS) is a very successful realization of a location ser-
vice that resolves symbolic names to contact addresses (IP addresses). DNSSEC (Secure DNS)
has been designed to support authentication preventing spoofing and man-in-the-middle at-
tacks (4). Both DNS and DNSSEC, however, are not designed to deal with highly dynamic
entities such as mobile agents. The dynamic nature of mobile agents in Internet-scale, open
network systems requires a different type of approach for registering, deregistering, and re-
trieving location information. Scalability and integrity are of utmost importance as (up-to-
date) agent location information is a prerequisite of successful agent mobility.
This section presents an approach for a scalable and secure location service.

7.1 Information in the Lookup Service
To make a lookup service secure, the service should store not only agent-ids and their current
location, but also provide ways for its users to determine the validity (i.e., trustworthiness)
of that information. In an open environment, users of a lookup service know that a lookup
service may be compromised and may contain false information. One way to solve this prob-
lem is to have information published in the lookup service be signed by its publisher. The
validity of the information returned by a lookup server depends on the level of trust placed
in the signing publisher. Signing is done with public-key cryptography. This system requires

Autonomous	Agents122

a public-key infrastructure (PKI). The PKI ensures that public-keys are published in a secure
and authenticated manner.
It is possible to integrate (a simple version of) a PKI and the lookup service. In this case, the
lookup service holds two types of information: Agent-Location information and Certificates.
The first piece of information is simply an (Agent-id, Location) pair, denoting the current lo-
cation of a specific agent. This information is signed by the platform that currently holds the
agent. Certificates are signed (location, public-key) pairs denoting that the specified public
key is the public key of the platform running on that specified location. Note that it is possible
for platforms to sign their own certificates: self-signed certificates. However, the trustworthi-
ness of self-signed certificates is questionable in an open, hostile environment.
Each certificate is signed by a principal, which is either a root certificate authority or another
platform. By allowing platforms to sign certificates containing public keys of other platforms
a web of trust (13) can be build. Platforms should only sign a certificate for another platform
if it trusts that the other platform is not malicious. Users of the lookup service can follow the
chain of signatures in the certificates until they find a signature of a platform that they trust.
This principle assumes that trust is transitive, that is, you trust everyone that is trusted by
someone you trust. This principle may be too naive for some and they can restrict themselves
to only trust information that is signed by someone they trust directly.

7.2 Using the Secure Lookup Service
This section describes how a secure lookup service is used in an agent platform, such as Agent-
Scape. Agents are identified by a GUID and locations are identified by their name (location-
name). Each location is responsible for publishing the location information for all of the agents
it currently hosts. Furthermore, when a location starts, it first publishes its public-key via a
certificate so others can verify the signature of all information published by this platform. This
certificate is signed by a (root) certificate authority. Note that it is assumed that the public keys
of root certificate authorities are well-known and that everyone has obtained a copy of them in
a secure manner. For example, platform administrators could exchange certificates in person.
In addition, the started platform can sign certificates for other platforms, indicating that it
trusts and ‘endorses’ the information signed by those platforms. Which platforms to trust is
usually determined by a platform’s administrator and is typically stored in a list by the agent
platform.
Below, the main functionality of a location service is briefly discussed.

7.2.1 Registering an Agent.
When an agent is injected into an agent system its location is registered by the lookup service.
First, the hosting agent platform creates a (agent GUID, locationname) pair. This information
is signed by the hosting platform and published in the lookup service for others to find.

7.2.2 Deregistering an Agent.
Deregistering is done by explicitly publishing that the agent does not have a current location
anymore, indicating that the agent no longer exists. To prevent the information in a lookup
service from growing too much, information in the lookup service could have an expiration
time, that is, a lookup service removes expired information automatically, unless the informa-
tion is republished periodically. In this case, an alternative solution for deregistering an agent
is to simply let an agent’s location information expire from the lookup service, that is, to not
republish the information for that agent. Note, that until the information expires, the lookup

service will errantly report an agent’s location, but this is not severe, as any attempt to con-
tact the agent will simply fail with an error that the agent does not exist anymore. Choosing
smaller expire times decreases this problem, but requires valid information to be republished
more often.

7.2.3 Lookup of an Agent’s Location.
Agent lookup is done by searching the lookup service for all information pairs concerning an
agent’s GUID.

• If no information is found an agent does not exist (anymore).

• If multiple pairs are found, the platform filters the pairs by only looking at informa-
tion signed by known and trusted platforms. The most recently published information
indicates the current location of the agent. The recentness of information can be deter-
mined by including version numbers (e.g., timestamps) with each published piece of
information.

A less strict trust-model would allow a recursive search for certificates of signing platforms
until a certificate is found that is signed by a trusted platform.

7.2.4 Agent Migration.
Agent migration is the most complicated scenario: care must be taken to ensure the agent is
not accidentally ‘dropped’ or duplicated, for example, when one of the locations crashes or
network connectivity is lost. Another important issue is to correctly update an agent’s location
in the lookup service.
The basic agent migration procedure is as follows, given an agent A, and locations X and Y.

• Agent A, running on location X, indicates its wish to migrate to location Y.

• Location X contacts location Y and transfers agent A.

• Location Y acknowledges to location X that agent A has been received.

• Location X stops republishing location information for agent A, but maintains a for-
warding pointer for agent A to location Y in case other agents try to contact agent A on
the old location.

• Location Y publishes that agent A is now located at location Y. As this piece of informa-
tion has a higher version number than the previous information published by location
X, this marks location Y as the current location of agent A.

7.3 Scalability
The previous section focused on the problem that the information in a lookup service must
be authenticated and its integrity guaranteed. Another problem to tackle is scalability. In a
distributed environment with potentially many hundreds of thousands of agents (or more)
and many migrations, the lookup service can quickly become a performance bottleneck, es-
pecially if a centralized lookup service is used. One technique for scalability is Peer-to-Peer
technology. For example, a distributed hash table (DHT) (38; 42; 47) is a decentralized lookup
datastructure that is similar to a hashtable and aimed at performance.
A DHT stores (key, value) pairs and allows quick retrieval of the value associated with a
particular key. The data can be spread over the participating nodes, but can also be replicated
to increase lookup performance and/or to make the system more fault tolerant. A DHT is a
self-managed datastructure. The nodes themselves are responsible for balancing the load and

Security	in	Large-Scale	Open	Distributed	Multi-Agent	Systems 123

a public-key infrastructure (PKI). The PKI ensures that public-keys are published in a secure
and authenticated manner.
It is possible to integrate (a simple version of) a PKI and the lookup service. In this case, the
lookup service holds two types of information: Agent-Location information and Certificates.
The first piece of information is simply an (Agent-id, Location) pair, denoting the current lo-
cation of a specific agent. This information is signed by the platform that currently holds the
agent. Certificates are signed (location, public-key) pairs denoting that the specified public
key is the public key of the platform running on that specified location. Note that it is possible
for platforms to sign their own certificates: self-signed certificates. However, the trustworthi-
ness of self-signed certificates is questionable in an open, hostile environment.
Each certificate is signed by a principal, which is either a root certificate authority or another
platform. By allowing platforms to sign certificates containing public keys of other platforms
a web of trust (13) can be build. Platforms should only sign a certificate for another platform
if it trusts that the other platform is not malicious. Users of the lookup service can follow the
chain of signatures in the certificates until they find a signature of a platform that they trust.
This principle assumes that trust is transitive, that is, you trust everyone that is trusted by
someone you trust. This principle may be too naive for some and they can restrict themselves
to only trust information that is signed by someone they trust directly.

7.2 Using the Secure Lookup Service
This section describes how a secure lookup service is used in an agent platform, such as Agent-
Scape. Agents are identified by a GUID and locations are identified by their name (location-
name). Each location is responsible for publishing the location information for all of the agents
it currently hosts. Furthermore, when a location starts, it first publishes its public-key via a
certificate so others can verify the signature of all information published by this platform. This
certificate is signed by a (root) certificate authority. Note that it is assumed that the public keys
of root certificate authorities are well-known and that everyone has obtained a copy of them in
a secure manner. For example, platform administrators could exchange certificates in person.
In addition, the started platform can sign certificates for other platforms, indicating that it
trusts and ‘endorses’ the information signed by those platforms. Which platforms to trust is
usually determined by a platform’s administrator and is typically stored in a list by the agent
platform.
Below, the main functionality of a location service is briefly discussed.

7.2.1 Registering an Agent.
When an agent is injected into an agent system its location is registered by the lookup service.
First, the hosting agent platform creates a (agent GUID, locationname) pair. This information
is signed by the hosting platform and published in the lookup service for others to find.

7.2.2 Deregistering an Agent.
Deregistering is done by explicitly publishing that the agent does not have a current location
anymore, indicating that the agent no longer exists. To prevent the information in a lookup
service from growing too much, information in the lookup service could have an expiration
time, that is, a lookup service removes expired information automatically, unless the informa-
tion is republished periodically. In this case, an alternative solution for deregistering an agent
is to simply let an agent’s location information expire from the lookup service, that is, to not
republish the information for that agent. Note, that until the information expires, the lookup

service will errantly report an agent’s location, but this is not severe, as any attempt to con-
tact the agent will simply fail with an error that the agent does not exist anymore. Choosing
smaller expire times decreases this problem, but requires valid information to be republished
more often.

7.2.3 Lookup of an Agent’s Location.
Agent lookup is done by searching the lookup service for all information pairs concerning an
agent’s GUID.

• If no information is found an agent does not exist (anymore).

• If multiple pairs are found, the platform filters the pairs by only looking at informa-
tion signed by known and trusted platforms. The most recently published information
indicates the current location of the agent. The recentness of information can be deter-
mined by including version numbers (e.g., timestamps) with each published piece of
information.

A less strict trust-model would allow a recursive search for certificates of signing platforms
until a certificate is found that is signed by a trusted platform.

7.2.4 Agent Migration.
Agent migration is the most complicated scenario: care must be taken to ensure the agent is
not accidentally ‘dropped’ or duplicated, for example, when one of the locations crashes or
network connectivity is lost. Another important issue is to correctly update an agent’s location
in the lookup service.
The basic agent migration procedure is as follows, given an agent A, and locations X and Y.

• Agent A, running on location X, indicates its wish to migrate to location Y.

• Location X contacts location Y and transfers agent A.

• Location Y acknowledges to location X that agent A has been received.

• Location X stops republishing location information for agent A, but maintains a for-
warding pointer for agent A to location Y in case other agents try to contact agent A on
the old location.

• Location Y publishes that agent A is now located at location Y. As this piece of informa-
tion has a higher version number than the previous information published by location
X, this marks location Y as the current location of agent A.

7.3 Scalability
The previous section focused on the problem that the information in a lookup service must
be authenticated and its integrity guaranteed. Another problem to tackle is scalability. In a
distributed environment with potentially many hundreds of thousands of agents (or more)
and many migrations, the lookup service can quickly become a performance bottleneck, es-
pecially if a centralized lookup service is used. One technique for scalability is Peer-to-Peer
technology. For example, a distributed hash table (DHT) (38; 42; 47) is a decentralized lookup
datastructure that is similar to a hashtable and aimed at performance.
A DHT stores (key, value) pairs and allows quick retrieval of the value associated with a
particular key. The data can be spread over the participating nodes, but can also be replicated
to increase lookup performance and/or to make the system more fault tolerant. A DHT is a
self-managed datastructure. The nodes themselves are responsible for balancing the load and

Autonomous	Agents124

maintaining the data. Nodes can dynamically join and leave the DHT without disrupting the
service. These properties make a DHT very scalable, and therefore, make it a good candidate
for implementing a distributed lookup service.
In a lookup service based on a DHT, the (key, value) pairs stored in the DHT are the signed
(agent-id, location) information pairs. An agent’s location can be quickly retrieved via the
DHT. Furthermore, each platform’s certificate is stored as a (location, certificate) pair, making
verifying signatures straightforward. Note that certificates are relatively static which means
that they are easily cached at each host, making lookups in the lookup service necessary only
for unknown public-keys, or when the cached copy is too old. Caching increases the per-
formance of the distributed lookup service even further. Experiments in AgentScape with a
secure lookup service based on a DHT, as described in this section, have shown promising
results with respect to performance (33).

8. Agent Systems Overview

Many dozens of agent systems have been designed and developed over the last ten years or
so. Some of them have reached quite a mature state and have an active community supporting
and using the agent system. This section briefly introduces and discusses a few representative
agent systems: AgentScape (20), Ajanta (23), SeMoA (41), and Jade (5). These agent systems
are chosen because they are well-known and/or have a focus on security aspects. Each of
these systems provides centralized access control. In contrast, the security solutions presented
in the previous sections all emphasize a distributed solution.
The discussion of each agent system focuses on their security architecture and the different
approaches taken by these agent systems to deal with individual security requirements. An
extensive and detailed discussion of each agent system is out of the scope of this chapter.

8.1 AgentScape
AgentScape (20) is a middleware layer that supports open, distributed, large-scale agent sys-
tems. It was designed especially to be used in a large-scale, distributed, heterogeneous, open
environment. Its design provides minimal but sufficient support for agent applications within
an open environment, and can be extended to incorporate new functionality or adopt (new)
standards into the platform. AgentScape is written in Java and therefore runs on multiple
operating systems. It also supports agents written in different programming languages, such
as Java, Jason (7), and C.
Within AgentScape, agents are active entities that reside within locations, consisting of multiple
hosts, and services are external software systems accessed by agents. Each host runs an instance
of the AgentScape middleware. AgentScape uses a Public Key Infrastructure (PKI). Agent
owners, locations and hosts have public key pairs. This ensures that locations and hosts can
mutually authenticate and set up secure communication channels, using SSL.
Furthermore, every agent has a GUID that is assigned by the agent platform. This GUID is
an identifying reference used by the middleware to address an agent and perform operations,
such as deliver messages, stop and/or pause, migrate or even kill and/or remove the agent.
A GUID is private to the middleware. Externally, agents use handles. An agent can have
as many handles as it requires. Handles can be published publicly, making access to the
agents for others possible. An agent’s handles are uniquely linked to its GUID, but the agent’s
GUID cannot be deduced from its handles, which makes them suitable as pseudonyms (see
Section 3.1).

8.2 Ajanta
Ajanta (24) is a mobile-agent system based on the Java programming language. Security and
robustness have been primary concerns in Ajanta’s development. Ajanta platforms can guard
themselves against malicious agents. An Ajanta system consists of several AgentServers run-
ning on hosts. Each agent server creates a confined execution environment for visiting agents
and provides them controlled access to local resources. Agents can migrate to other agent
servers, communicate with each other, query their environment, etc. The implementation of
Ajanta’s security architecture is based on proxies and Java’s security model to restrict, con-
trol, and (remotely) monitor running agents. Agents do not have direct references to a host’s
resources. Instead they have to go through proxies, which check whether the agent has the
authorization to access that resource. Furthermore, agent owners can use encryption to secure
parts of the agent’s data, thereby guaranteeing the data’s confidentiality and integrity.

8.3 SeMoA
Secure Mobile Agents (SeMoA) (40) is an extensible Agent platform, written in Java, designed
to counter certain protocol attacks and malicious agents. SeMoA has a RBAC-based access
control architecture. SeMoA is also designed to load agents in a secure manner, as each agent
is loaded in a separate class loader. This enforces separation between agents, and prevents
agents interfering with other code executing within a location. Execution of agents is managed
explicitly, with access to features such as threads and resources mediated upon.

8.4 Jade with Jade-S and S-Agent
The Java Agent Development Platform (JADE) (5) is a popular FIPA-compliant agent middle-
ware platform. There are a number of extensions to JADE that provide a security architecture
to the system, in particular S-Agent (16) and the JADE-S plugin (34).
S-Agent extends JADE with the intention of providing data confidentiality and addressing
the malicious host problem, described in Section 5. S-Agent provides two solutions to the
malicious host problem without the need for secure hardware. These solutions are implemen-
tations of two different security protocols, the ACCK protocol (2) and the TX protocol (48).
ACCK uses a trusted third party to ensure that a host does not act maliciously. The TX proto-
col uses a threshold scheme, where two or more agents must agree that an action is authorized
before that action will be allowed. This eliminates the need for a trusted third party. However,
it can require more protocol interactions, depending on the number of parties required for the
threshold to be met.
JADE-S is an extension to JADE providing decentralized access control. It uses the SPKI (11)
trust management system. Trust management systems have a number of advantages com-
pared to the traditional identity-based systems created using X.509. Policies and certificates
are created and maintained separately from the application. The terminology used within
the policies and/or credentials is application defined. They are represented in an application
specific fashion, allowing the application designer to decide what characteristics are required.
Agents are explicitly granted permissions, and only agents trusted by the location are autho-
rized to execute code at that location.

9. Summary

Security in multi-agent systems is a major concern, particularly in multi-agent systems de-
ployed in a large-scale, distributed, and open environment. Finding a balance between re-

Security	in	Large-Scale	Open	Distributed	Multi-Agent	Systems 125

maintaining the data. Nodes can dynamically join and leave the DHT without disrupting the
service. These properties make a DHT very scalable, and therefore, make it a good candidate
for implementing a distributed lookup service.
In a lookup service based on a DHT, the (key, value) pairs stored in the DHT are the signed
(agent-id, location) information pairs. An agent’s location can be quickly retrieved via the
DHT. Furthermore, each platform’s certificate is stored as a (location, certificate) pair, making
verifying signatures straightforward. Note that certificates are relatively static which means
that they are easily cached at each host, making lookups in the lookup service necessary only
for unknown public-keys, or when the cached copy is too old. Caching increases the per-
formance of the distributed lookup service even further. Experiments in AgentScape with a
secure lookup service based on a DHT, as described in this section, have shown promising
results with respect to performance (33).

8. Agent Systems Overview

Many dozens of agent systems have been designed and developed over the last ten years or
so. Some of them have reached quite a mature state and have an active community supporting
and using the agent system. This section briefly introduces and discusses a few representative
agent systems: AgentScape (20), Ajanta (23), SeMoA (41), and Jade (5). These agent systems
are chosen because they are well-known and/or have a focus on security aspects. Each of
these systems provides centralized access control. In contrast, the security solutions presented
in the previous sections all emphasize a distributed solution.
The discussion of each agent system focuses on their security architecture and the different
approaches taken by these agent systems to deal with individual security requirements. An
extensive and detailed discussion of each agent system is out of the scope of this chapter.

8.1 AgentScape
AgentScape (20) is a middleware layer that supports open, distributed, large-scale agent sys-
tems. It was designed especially to be used in a large-scale, distributed, heterogeneous, open
environment. Its design provides minimal but sufficient support for agent applications within
an open environment, and can be extended to incorporate new functionality or adopt (new)
standards into the platform. AgentScape is written in Java and therefore runs on multiple
operating systems. It also supports agents written in different programming languages, such
as Java, Jason (7), and C.
Within AgentScape, agents are active entities that reside within locations, consisting of multiple
hosts, and services are external software systems accessed by agents. Each host runs an instance
of the AgentScape middleware. AgentScape uses a Public Key Infrastructure (PKI). Agent
owners, locations and hosts have public key pairs. This ensures that locations and hosts can
mutually authenticate and set up secure communication channels, using SSL.
Furthermore, every agent has a GUID that is assigned by the agent platform. This GUID is
an identifying reference used by the middleware to address an agent and perform operations,
such as deliver messages, stop and/or pause, migrate or even kill and/or remove the agent.
A GUID is private to the middleware. Externally, agents use handles. An agent can have
as many handles as it requires. Handles can be published publicly, making access to the
agents for others possible. An agent’s handles are uniquely linked to its GUID, but the agent’s
GUID cannot be deduced from its handles, which makes them suitable as pseudonyms (see
Section 3.1).

8.2 Ajanta
Ajanta (24) is a mobile-agent system based on the Java programming language. Security and
robustness have been primary concerns in Ajanta’s development. Ajanta platforms can guard
themselves against malicious agents. An Ajanta system consists of several AgentServers run-
ning on hosts. Each agent server creates a confined execution environment for visiting agents
and provides them controlled access to local resources. Agents can migrate to other agent
servers, communicate with each other, query their environment, etc. The implementation of
Ajanta’s security architecture is based on proxies and Java’s security model to restrict, con-
trol, and (remotely) monitor running agents. Agents do not have direct references to a host’s
resources. Instead they have to go through proxies, which check whether the agent has the
authorization to access that resource. Furthermore, agent owners can use encryption to secure
parts of the agent’s data, thereby guaranteeing the data’s confidentiality and integrity.

8.3 SeMoA
Secure Mobile Agents (SeMoA) (40) is an extensible Agent platform, written in Java, designed
to counter certain protocol attacks and malicious agents. SeMoA has a RBAC-based access
control architecture. SeMoA is also designed to load agents in a secure manner, as each agent
is loaded in a separate class loader. This enforces separation between agents, and prevents
agents interfering with other code executing within a location. Execution of agents is managed
explicitly, with access to features such as threads and resources mediated upon.

8.4 Jade with Jade-S and S-Agent
The Java Agent Development Platform (JADE) (5) is a popular FIPA-compliant agent middle-
ware platform. There are a number of extensions to JADE that provide a security architecture
to the system, in particular S-Agent (16) and the JADE-S plugin (34).
S-Agent extends JADE with the intention of providing data confidentiality and addressing
the malicious host problem, described in Section 5. S-Agent provides two solutions to the
malicious host problem without the need for secure hardware. These solutions are implemen-
tations of two different security protocols, the ACCK protocol (2) and the TX protocol (48).
ACCK uses a trusted third party to ensure that a host does not act maliciously. The TX proto-
col uses a threshold scheme, where two or more agents must agree that an action is authorized
before that action will be allowed. This eliminates the need for a trusted third party. However,
it can require more protocol interactions, depending on the number of parties required for the
threshold to be met.
JADE-S is an extension to JADE providing decentralized access control. It uses the SPKI (11)
trust management system. Trust management systems have a number of advantages com-
pared to the traditional identity-based systems created using X.509. Policies and certificates
are created and maintained separately from the application. The terminology used within
the policies and/or credentials is application defined. They are represented in an application
specific fashion, allowing the application designer to decide what characteristics are required.
Agents are explicitly granted permissions, and only agents trusted by the location are autho-
rized to execute code at that location.

9. Summary

Security in multi-agent systems is a major concern, particularly in multi-agent systems de-
ployed in a large-scale, distributed, and open environment. Finding a balance between re-

Autonomous	Agents126

stricting access to resources and allowing enough openness to let the whole system function
efficiently and effectively is the challenge.
This chapter has identified threats to the two main stakeholders in an agent system: the agent
owner and the platform administrator. The security requirements looked at included identity
management, secure communication, and maintaining confidentiality, integrity, and availabil-
ity for the stakeholders. These requirements need to be fulfilled for any secure agent system.
Each security requirement has been discussed in detail and solutions have been illustrated in
the AgentScape agent platform.

Acknowledgments
This work is a result of support provided by the NLnet Foundation (http://www.nlnet.
nl). The authors wish to thank Benno Overeinder, David Mobach, Thomas Quillinan, Kassidy
Clark, Reinier Timmer, and Reinout van Schouwen for their contributions.

10. References

[1] A. Abdul-Rahman and S. Hailes. A distributed trust model. In Proceedings of the 1997
workshop on New security paradigms, pages 48–60. ACM Press, 1998.

[2] J. Algesheimer, C. Cachin, J. Camenisch, and G. Karjoth. Cryptographic security for
mobile code. In IEEE Symposium on Security and Privacy, pages 2–11, 2001.

[3] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano,
S. Tuecke, and M. Xu. Web services agreement negotiation specification (WS-
AgreementNegotiation) (draft). https://forge.gridforum.org/projects/graap-wg, 2004.

[4] D. Atkins and R. Austein. Threat analysis of the domain name system. IETF RFC 3833,
Aug. 2004.

[5] F. Bellifemine, A. Poggi, and G. Rimassa. JADE–A FIPA-compliant agent framework.
Proceedings of PAAM, 99:97–108, 1999.

[6] E. Bierman and E. Cloete. Classification of malicious host threats in mobile agent com-
puting. In Proceedings of the 2002 annual research conference of the South African institute
of computer scientists and information technologists on Enablement through technology, pages
141–148. RSA, 2002.

[7] R. H. Bordini, M. Wooldridge, and J. F. Hübner. Programming Multi-Agent Systems in
AgentSpeak using Jason (Wiley Series in Agent Technology). John Wiley & Sons, 2007.

[8] P. Braun and W. Rossak. Mobile Agents: Basic Concepts, Mobility Models, and the Tracy
Toolkit. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[9] S. Clauß and M. Köhntopp. Identity management and its support of multilateral security.
Computer Networks, 37(2):205–219, 2001.

[10] A. Csetenyi. Electronic government: perspectives from e-commerce. In Proceedings of the
11th International Workshop on Database and Expert Systems Applications, pages 6–8. IEEE
Computer Society Washington, DC, USA, 2000.

[11] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI certificate
theory. Request for Comment (RFC) 2693, Internet Engineering Task Force, September
1999.

[12] B. Fonseca. VeriSign issues false Microsoft digital certificates. http://www.
infoworld.com/articles/hn/xml/01/03/22/010322hnmicroversign.html,
March 2001. Infoworld.

[13] S. Garfinkel. PGP: Pretty Good Privacy. O’Reilly & Associates, Inc., Sebastopol, CA, USA,
1996.

[14] L. Gong. Inside Java™2 Platform Security. The Java™Series. Addison Wesley, June 1999.
ISBN: 0-201-31000-7.

[15] H. Guan, H. Zhang, P. Chen, and Y. Zhou. Integration and Innovation Orient to E-Society
Volume 1, volume 251 of IFIP International Federation for Information Processing, chapter
Mobile Agents Integrity Research, pages 194–201. Springer, 2008.

[16] V. Gunupudi and S. R. Tate. SAgent: A Security Framework for JADE. In Proceedings of
the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MASâĂŹ06), 2006.

[17] R. H. Guttman, A. G. Moukas, and P. Maes. Agent-mediated electronic commerce: a
survey. The Knowledge Engineering Review, 13(02):147–159, 2001.

[18] M. He, N. R. Jennings, and H. F. Leung. On agent-mediated electronic commerce. IEEE
Transactions on Knowledge and Data Engineering, 15(4):985–1003, 2003.

[19] T. D. Huynh, N. R. Jennings, and N. R. Shadbolt. Developing an integrated trust and
reputation model for open multi-agent systems. In Proceedings of the 7th International
Workshop on Trust in Agent Societies, pages 65–74, 2004.

[20] IIDS. AgentScape Agent Middleware. http://www.agentscape.org.
[21] B. Jacobs, M. Oostdijk, and M. Warnier. Source Code Verification of a Secure Payment

Applet. Journal of Logic and Algebraic Programming, 58(1-2):107–120, 2004.
[22] G. Karjoth, N. Asokan, and C. Gülcü. Protecting the computation results of free-roaming

agents. Personal Technologies, 2(2):92–99, 1998.
[23] N. M. Karnik and A. R. Tripathi. Agent Server Architecture for the Ajanta Mobile-Agent

System. In Proceedings of the 1998 International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA’98), pages 66–73, July 1998.

[24] N. M. Karnik and A. R. Tripathi. Design Issues in Mobile Agent Programming Systems.
IEEE Concurrency, 6(6):52–61, July–September 1998.

[25] C. Kaufman, R. Perlman, and M. Speciner. Network Security, PRIVATE Communication in
a PUBLIC World. Prentice Hall, 2nd edition, 2002.

[26] S. Kent and R. Atkinson. Security architecture for the internet protocol. IETF RFC 2401,
Nov. 1998.

[27] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC
Press, Boca Raton, FL, 1997.

[28] D. G. A. Mobach. Agent-Based Mediated Service Negotiation. PhD thesis, Computer Science
Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, May 2007.

[29] A. Moreno and J. L. Nealon. Applications of Software Agent Technology in the Health Care
Domain. Birkhauser, 2003.

[30] G. C. Necula and P. Lee. Proof-carrying code. In Proceedings of the 24th Symposium on
Principals of Programming (POPL). ACM, 1997.

[31] G. C. Necula and P. Lee. Safe, untrusted agents using proof-carrying code. Special Issue
on Mobile Agent Security, pages 61–91, 1997.

[32] Netscape Inc. Secure sockets layer website. http://www.mozilla.org/projects/
security/pki/nss/ssl/draft302.txt.

[33] B. J. Overeinder, M. A. Oey, R. J. Timmer, R. van Schouwen, E. Rozendaal, and F. M. T.
Brazier. Design of a secure and decentralized location service for agent platforms. In
Proceedings of the Sixth International Workshop on Agents and Peer-to-Peer Computing (AP2PC
2007), May 2007.

Security	in	Large-Scale	Open	Distributed	Multi-Agent	Systems 127

stricting access to resources and allowing enough openness to let the whole system function
efficiently and effectively is the challenge.
This chapter has identified threats to the two main stakeholders in an agent system: the agent
owner and the platform administrator. The security requirements looked at included identity
management, secure communication, and maintaining confidentiality, integrity, and availabil-
ity for the stakeholders. These requirements need to be fulfilled for any secure agent system.
Each security requirement has been discussed in detail and solutions have been illustrated in
the AgentScape agent platform.

Acknowledgments
This work is a result of support provided by the NLnet Foundation (http://www.nlnet.
nl). The authors wish to thank Benno Overeinder, David Mobach, Thomas Quillinan, Kassidy
Clark, Reinier Timmer, and Reinout van Schouwen for their contributions.

10. References

[1] A. Abdul-Rahman and S. Hailes. A distributed trust model. In Proceedings of the 1997
workshop on New security paradigms, pages 48–60. ACM Press, 1998.

[2] J. Algesheimer, C. Cachin, J. Camenisch, and G. Karjoth. Cryptographic security for
mobile code. In IEEE Symposium on Security and Privacy, pages 2–11, 2001.

[3] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano,
S. Tuecke, and M. Xu. Web services agreement negotiation specification (WS-
AgreementNegotiation) (draft). https://forge.gridforum.org/projects/graap-wg, 2004.

[4] D. Atkins and R. Austein. Threat analysis of the domain name system. IETF RFC 3833,
Aug. 2004.

[5] F. Bellifemine, A. Poggi, and G. Rimassa. JADE–A FIPA-compliant agent framework.
Proceedings of PAAM, 99:97–108, 1999.

[6] E. Bierman and E. Cloete. Classification of malicious host threats in mobile agent com-
puting. In Proceedings of the 2002 annual research conference of the South African institute
of computer scientists and information technologists on Enablement through technology, pages
141–148. RSA, 2002.

[7] R. H. Bordini, M. Wooldridge, and J. F. Hübner. Programming Multi-Agent Systems in
AgentSpeak using Jason (Wiley Series in Agent Technology). John Wiley & Sons, 2007.

[8] P. Braun and W. Rossak. Mobile Agents: Basic Concepts, Mobility Models, and the Tracy
Toolkit. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[9] S. Clauß and M. Köhntopp. Identity management and its support of multilateral security.
Computer Networks, 37(2):205–219, 2001.

[10] A. Csetenyi. Electronic government: perspectives from e-commerce. In Proceedings of the
11th International Workshop on Database and Expert Systems Applications, pages 6–8. IEEE
Computer Society Washington, DC, USA, 2000.

[11] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI certificate
theory. Request for Comment (RFC) 2693, Internet Engineering Task Force, September
1999.

[12] B. Fonseca. VeriSign issues false Microsoft digital certificates. http://www.
infoworld.com/articles/hn/xml/01/03/22/010322hnmicroversign.html,
March 2001. Infoworld.

[13] S. Garfinkel. PGP: Pretty Good Privacy. O’Reilly & Associates, Inc., Sebastopol, CA, USA,
1996.

[14] L. Gong. Inside Java™2 Platform Security. The Java™Series. Addison Wesley, June 1999.
ISBN: 0-201-31000-7.

[15] H. Guan, H. Zhang, P. Chen, and Y. Zhou. Integration and Innovation Orient to E-Society
Volume 1, volume 251 of IFIP International Federation for Information Processing, chapter
Mobile Agents Integrity Research, pages 194–201. Springer, 2008.

[16] V. Gunupudi and S. R. Tate. SAgent: A Security Framework for JADE. In Proceedings of
the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MASâĂŹ06), 2006.

[17] R. H. Guttman, A. G. Moukas, and P. Maes. Agent-mediated electronic commerce: a
survey. The Knowledge Engineering Review, 13(02):147–159, 2001.

[18] M. He, N. R. Jennings, and H. F. Leung. On agent-mediated electronic commerce. IEEE
Transactions on Knowledge and Data Engineering, 15(4):985–1003, 2003.

[19] T. D. Huynh, N. R. Jennings, and N. R. Shadbolt. Developing an integrated trust and
reputation model for open multi-agent systems. In Proceedings of the 7th International
Workshop on Trust in Agent Societies, pages 65–74, 2004.

[20] IIDS. AgentScape Agent Middleware. http://www.agentscape.org.
[21] B. Jacobs, M. Oostdijk, and M. Warnier. Source Code Verification of a Secure Payment

Applet. Journal of Logic and Algebraic Programming, 58(1-2):107–120, 2004.
[22] G. Karjoth, N. Asokan, and C. Gülcü. Protecting the computation results of free-roaming

agents. Personal Technologies, 2(2):92–99, 1998.
[23] N. M. Karnik and A. R. Tripathi. Agent Server Architecture for the Ajanta Mobile-Agent

System. In Proceedings of the 1998 International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA’98), pages 66–73, July 1998.

[24] N. M. Karnik and A. R. Tripathi. Design Issues in Mobile Agent Programming Systems.
IEEE Concurrency, 6(6):52–61, July–September 1998.

[25] C. Kaufman, R. Perlman, and M. Speciner. Network Security, PRIVATE Communication in
a PUBLIC World. Prentice Hall, 2nd edition, 2002.

[26] S. Kent and R. Atkinson. Security architecture for the internet protocol. IETF RFC 2401,
Nov. 1998.

[27] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC
Press, Boca Raton, FL, 1997.

[28] D. G. A. Mobach. Agent-Based Mediated Service Negotiation. PhD thesis, Computer Science
Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, May 2007.

[29] A. Moreno and J. L. Nealon. Applications of Software Agent Technology in the Health Care
Domain. Birkhauser, 2003.

[30] G. C. Necula and P. Lee. Proof-carrying code. In Proceedings of the 24th Symposium on
Principals of Programming (POPL). ACM, 1997.

[31] G. C. Necula and P. Lee. Safe, untrusted agents using proof-carrying code. Special Issue
on Mobile Agent Security, pages 61–91, 1997.

[32] Netscape Inc. Secure sockets layer website. http://www.mozilla.org/projects/
security/pki/nss/ssl/draft302.txt.

[33] B. J. Overeinder, M. A. Oey, R. J. Timmer, R. van Schouwen, E. Rozendaal, and F. M. T.
Brazier. Design of a secure and decentralized location service for agent platforms. In
Proceedings of the Sixth International Workshop on Agents and Peer-to-Peer Computing (AP2PC
2007), May 2007.

Autonomous	Agents128

[34] A. Poggi, M. Tomaiuolo, and G. Vitaglione. Security and trust in agent-oriented middle-
ware. In R. Meersman and Z. Tari, editors, OTM Workshops 2003, number 2889 in LNCS,
pages 989–1003. Springer-Verlag, 2003.

[35] T. B. Quillinan, M. Warnier, M. A. Oey, R. J. Timmer, and F. M. T. Brazier. Enforcing
security in the agentscape middleware. In Proceedings of the 1st International Workshop on
Middleware Security (MidSec). ACM, December 2008.

[36] S. D. Ramchurn, C. Sierra, L. Godo, and N. R. Jennings. A computational trust model
for multi-agent interactions based on confidence and reputation. In Proceedings of the 6th
International Workshop of Deception, Fraud and Trust in Agent Societies, pages 69–75, 2003.

[37] O. Rana, M. Warnier, T. B. Quillinan, and F. M. T. Brazier. Monitoring and reputation
mechanisms for service level agreements. In Proceedings of the 5th International Workshop
on Grid Economics and Business Models (GenCon), Las Palmas, Gran Canaria, Spain., Au-
gust 2008. Springer Verlag.

[38] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker. A scalable content-
addressable network. In SIGCOMM, pages 161–172, 2001.

[39] V. Roth. Mutual protection of co-operating agents. In J. Vitek and C. D. Jensen, editors,
Secure Internet programming: security issues for mobile and distributed objects, volume 1603
of LNCS, pages 275–285. Springer-Verlag, 2001.

[40] V. Roth and M. Jalali. Concepts and architecture of a security-centric mobile agent server.
In Proc. Fifth International Symposium on Autonomous Decentralized Systems (ISADS 2001),
pages 435–442. IEEE Computer Society, 2001.

[41] V. Roth and M. Jalali-Sohi. Concepts and architecture of a security-centric mobile agent
server. In Proceedings of the Fifth International Symposium on Autonomous Decentralized
Systems, pages 435–442, Dallas, Texas, U.S.A., March 2001.

[42] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems. In Middleware 2001, volume 2218 of Lecture Notes in
Computer Science, pages 329–350. Springer-Verlag, Berlin, Germany, 2001.

[43] T. Sander and C. F. Tschudin. Protecting Mobile Agents Against Malicious Hosts. Mobile
Agents and Security, 60, 1998.

[44] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control
models. IEEE Computer, 29(2):38–47, February 1996.

[45] A. Saxena and B. Soh. Authenticating mobile agent platforms using signature chaining
without trusted third parties. In Proceedings of the 2005 IEEE International Conference on
e-Technology, e-Commerce and e-Service, (EEE’05)., pages 282–285, 2005.

[46] W. Stallings. Cryptography and network security: principles and practice. Prentice Hall, 2006.
[47] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, F. Kaashoek, F. Dabek, and H. Bal-

akrishnan. Chord: A scalable peer-to-peer lookup protocol for Internet applications.
IEEE/ACM Transactions on Networking, 11(1):17–32, Feb. 2003.

[48] S. R. Tate and K. Xu. Mobile agent security through multi-agent cryptographic protocols.
In Proceedings of the 4th International Conference on Internet Computing, pages 462–468, Las
Vegas, NV., 2003.

[49] Trusted Computing Group. TPM main specification. http://www.
trustedcomputinggroup.org/resources/tpm_main_specification, July
2007.

[50] G. van ’t Noordende, A. Balogh, R. F. H. Hofman, F. M. T. Brazier, and A. S. Tanenbaum.
A secure jailing system for confining untrusted applications. In Proc. 2nd International
Conference on Security and Cryptography (SECRYPT), pages 414–423, July 2007.

[51] M. Warnier and F. M. T. Brazier. Organized anonymous agents. In Proceedings of The Third
International Symposium on Information Assurance and Security (IAS’07). IEEE, August 2007.

[52] M. Warnier, F. M. T. Brazier, and A. Oskamp. Security of distributed digital criminal
dossiers. Journal of Software (Academy Publisher), 3(3), March 2008.

[53] M. Warnier, M. A. Oey, R. J. Timmer, B. J. Overeinder, and F. M. T. Brazier. Enforcing
integrity of agent migration paths by distribution of trust. Int. J. of Intelligent Information
and Database Systems, 3(4), 2009.

[54] X. Zhang, S. Oh, and R. Sandhu. PDBM: A flexible delegation model in RBAC. In Proceed-
ings of the 7th ACM Symposium on Access Control Models and Technologies (SACMAT 2003),
Como, Italy, 2003.

Security	in	Large-Scale	Open	Distributed	Multi-Agent	Systems 129

[34] A. Poggi, M. Tomaiuolo, and G. Vitaglione. Security and trust in agent-oriented middle-
ware. In R. Meersman and Z. Tari, editors, OTM Workshops 2003, number 2889 in LNCS,
pages 989–1003. Springer-Verlag, 2003.

[35] T. B. Quillinan, M. Warnier, M. A. Oey, R. J. Timmer, and F. M. T. Brazier. Enforcing
security in the agentscape middleware. In Proceedings of the 1st International Workshop on
Middleware Security (MidSec). ACM, December 2008.

[36] S. D. Ramchurn, C. Sierra, L. Godo, and N. R. Jennings. A computational trust model
for multi-agent interactions based on confidence and reputation. In Proceedings of the 6th
International Workshop of Deception, Fraud and Trust in Agent Societies, pages 69–75, 2003.

[37] O. Rana, M. Warnier, T. B. Quillinan, and F. M. T. Brazier. Monitoring and reputation
mechanisms for service level agreements. In Proceedings of the 5th International Workshop
on Grid Economics and Business Models (GenCon), Las Palmas, Gran Canaria, Spain., Au-
gust 2008. Springer Verlag.

[38] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker. A scalable content-
addressable network. In SIGCOMM, pages 161–172, 2001.

[39] V. Roth. Mutual protection of co-operating agents. In J. Vitek and C. D. Jensen, editors,
Secure Internet programming: security issues for mobile and distributed objects, volume 1603
of LNCS, pages 275–285. Springer-Verlag, 2001.

[40] V. Roth and M. Jalali. Concepts and architecture of a security-centric mobile agent server.
In Proc. Fifth International Symposium on Autonomous Decentralized Systems (ISADS 2001),
pages 435–442. IEEE Computer Society, 2001.

[41] V. Roth and M. Jalali-Sohi. Concepts and architecture of a security-centric mobile agent
server. In Proceedings of the Fifth International Symposium on Autonomous Decentralized
Systems, pages 435–442, Dallas, Texas, U.S.A., March 2001.

[42] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems. In Middleware 2001, volume 2218 of Lecture Notes in
Computer Science, pages 329–350. Springer-Verlag, Berlin, Germany, 2001.

[43] T. Sander and C. F. Tschudin. Protecting Mobile Agents Against Malicious Hosts. Mobile
Agents and Security, 60, 1998.

[44] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control
models. IEEE Computer, 29(2):38–47, February 1996.

[45] A. Saxena and B. Soh. Authenticating mobile agent platforms using signature chaining
without trusted third parties. In Proceedings of the 2005 IEEE International Conference on
e-Technology, e-Commerce and e-Service, (EEE’05)., pages 282–285, 2005.

[46] W. Stallings. Cryptography and network security: principles and practice. Prentice Hall, 2006.
[47] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, F. Kaashoek, F. Dabek, and H. Bal-

akrishnan. Chord: A scalable peer-to-peer lookup protocol for Internet applications.
IEEE/ACM Transactions on Networking, 11(1):17–32, Feb. 2003.

[48] S. R. Tate and K. Xu. Mobile agent security through multi-agent cryptographic protocols.
In Proceedings of the 4th International Conference on Internet Computing, pages 462–468, Las
Vegas, NV., 2003.

[49] Trusted Computing Group. TPM main specification. http://www.
trustedcomputinggroup.org/resources/tpm_main_specification, July
2007.

[50] G. van ’t Noordende, A. Balogh, R. F. H. Hofman, F. M. T. Brazier, and A. S. Tanenbaum.
A secure jailing system for confining untrusted applications. In Proc. 2nd International
Conference on Security and Cryptography (SECRYPT), pages 414–423, July 2007.

[51] M. Warnier and F. M. T. Brazier. Organized anonymous agents. In Proceedings of The Third
International Symposium on Information Assurance and Security (IAS’07). IEEE, August 2007.

[52] M. Warnier, F. M. T. Brazier, and A. Oskamp. Security of distributed digital criminal
dossiers. Journal of Software (Academy Publisher), 3(3), March 2008.

[53] M. Warnier, M. A. Oey, R. J. Timmer, B. J. Overeinder, and F. M. T. Brazier. Enforcing
integrity of agent migration paths by distribution of trust. Int. J. of Intelligent Information
and Database Systems, 3(4), 2009.

[54] X. Zhang, S. Oh, and R. Sandhu. PDBM: A flexible delegation model in RBAC. In Proceed-
ings of the 7th ACM Symposium on Access Control Models and Technologies (SACMAT 2003),
Como, Italy, 2003.

Autonomous	Agents130

	Preface
	State and Action Abstraction in the Development of Agent Controllers
	Brent E. Eskridge and Dean F. Hougen
	Graph Laplacian Based Transfer Learning Methods in Reinforcement Learning
	Yi-Ting Tsao, Ke-Ting Xiao, Von-Wun Soo and Chung-Cheng Chiu
	Tracking behaviours of cooperative robots within multi-agent domains
	Fernando Ramos and Huberto Ayanegui
	Petri Net Robotic Task Plan Representation: Modelling, Analysis and Execution
	Hugo Costelha and Pedro Lima
	Effective Planning for Conflicting Situations for Ubiquitous Sensor Network Environments
	Toshiharu Sugawara, Satoshi Kurihara, Toshio Hirotsu, Kensuke Fukuda and Toshihiro Takada
	Security in Large-Scale Open Distributed Multi-Agent Systems
	M.A. Oey, M.Warnier and F.M.T. Brazier

